Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Двигатель химический

В обычных реактивных двигателях химическая энергия топлива преобразуется в кинетическую энергию выбрасываемой из сопла струи газа (или жидкости). Возникающую при выбрасывании из сопла струи газа реактивную силу называют силой тяги.  [c.113]

Основные понятия. В современной технике все большее распространение получают машины, аппараты и приборы, в которых совершение механической работы связано с преобразованием потенциальной энергии (энергии давления) газа или пара в кинетическую энергию потока (струи) рабочего тела. Изучение рабочих процессов устройств, основанных на использовании кинетической энергии потока, приобретает все большее значение, особенно в связи с развитием современной теплоэнергетики (паровые и газовые турбины), ракетной техники и реактивных двигателей, химической промышленности (инжекторы, форсунки, горелки н пр.) и холодильной техники.  [c.6]


С учетом пластических деформаций рассчитываются сильно напряженные элементы конструкций типа оболочек ракетных двигателей, химических реакторов, мультипликаторов, толстостенных труб, испытывающих высокие давления, и др.  [c.547]

Можно привести более сложные примеры. Например, допустим, что искра воспламеняет горючую смесь бензина и воздуха в цилиндре автомобильного двигателя. Химическая реакция может завершаться настолько быстро, что передача тепла через стенки в окружающую среду за время реакции будет исчезающе малой. В таком случае состояние системы, т. е. продуктов горения, является состоянием с большей энтропией по сравнению с начальным состоянием.  [c.56]

В связи с быстрым развитием машиностроения в настоящее время все более важное значение приобретают расчеты на прочность деталей машин, длительное время работающих при высоких температурах. К таким деталям относятся, например, диски и лопатки паровых и газовых турбин, трубы и другие детали паровых котлов, различные части двигателей внутреннего сгорания, реактивных двигателей, химических установок и приборов и многие другие.  [c.571]

Условия эксплуатации двигателей химически стойкого исполнения  [c.801]

Чугунные гильзы цилиндров двигателей — Химический состав 18—19 (табл. 11)  [c.293]

Выпускается и применяется новый антифрикционный сплав СОС 6-6 для тонкостенных вкладышей подшипников карбюраторных двигателей. Химический состав сплава СОС 6-6 следующий 5,5—6,5% олова, 5,5—6,6% сурьмы и остальное — свинец.  [c.89]

Льюис Б., Экспериментальные методы исследования процессов горения в двигателях, Химические основы работы двигателя. Сб. 1, Изд-во иностр. лит., 1948.  [c.268]

Топливо для печей и газовых двигателей. Химическое сырье  [c.17]

При образовании желтоватых отложений на изоляторах свечей, в камерах сгорания и в глушителях нарушается нормальная работа двигателя. Химический анализ этих отложений показывает, что они состоят главным образом из сернистых соединений свинца и частично из его окислов, а галогены обнаруживаются редко. Поскольку часть свинца образует окислы и сернистые соединения, имеется дополнительный избыток галогенов, которые могут корродировать детали двигателя.  [c.119]


Химической называют такую коррозию, когда металл вступает в прямое химическое взаимодействие с окружающей средой или с некоторыми компонентами среды. Это обычная химическая реакция, которая подчиняется законам химической кинетики гетерогенных реакций. Химическая коррозия протекает в средах, не проводящих электрического тока в сухих газах и неэлектролитах. Протекающие при этом окислительно-восстановительные реакции осуществляются путем непосредственного перехода электронов в атомы металла на окислитель, входящий в состав среды. При химической коррозии окисление металла и восстановление окисляющего агента среды происходит в одном акте. Примером химической коррозии является газовая коррозия выпускного тракта двигателей отработавшими газами. В топливной системе двигателей химическая коррозия возможна за счет взаимодействия металлов с некоторыми сернистыми соединениями, содержащимися в топливах.  [c.82]

При термодинамическом расчете двигателя химический состав и теплоты образования топливных компонентов и продуктов предполагаются заданными. Заданным считается и давление в камере. Необходимо определить количество выделившегося при горении тепла, а оно связано с составом образующихся газов. Следовательно, первым этапом термодинамического расчета является определение условий равновесного состояния в камере сгорания, для чего необходимо прежде всего представить качественную картину возникающих реакций.  [c.214]

Хотя твердотопливный ракетный двигатель является, в некоторых отношениях, более сложной по сравнению с жидкостным двигателем химической системой, такой  [c.473]

Это выражение очень часто используется в расчетах, так как огромное количество процессов подвода теплоты в теплоэнергетике (в паровых котлах, камерах сгорания газовых турбин и реактивных двигателей, теплообменных аппаратах), а также целый ряд процессов химической технологии и многих других осуществляется при постоянном давлении. Кстати, по этой причине в таблицах термодинамических свойств обычно приводятся значения энтальпии, а не внутренней энергии.  [c.18]

Практически в существующих тепловых двигателях горячими источниками служат химические реакции сжигания топлива или внутриядерные реакции, а в качестве холодного источника  [c.21]

Закон Дальтона. В инженерной практике часто приходится иметь дело с газообразными веществами, близкими по свойствам к идеальным газам и представляющими собой механическую смесь отдельных компонентов различных газов, химически не реагирующих между собой. Это так называемые газовые смеси. В качестве примера можно назвать продукты сгорания топлива в двигателях внутреннего сгорания, топках печей и паровых котлов, влажный воздух в сушильных установках и т. п.  [c.40]

Ряд технологических процессов, особенно химической промышленности, связан с потоками нагретых сжатых газов. Расширение этих газов в газовой турбине позволяет получить энергию, которая обычно используется в этом же процессе, например для нагнетания тех же газов. В этом случае вал турбины непосредственно соединяется с валом турбокомпрессора. Такое комбинирование позволяет существенно снизить потребление энергии в технологическом процессе. К сожалению, оно используется еще недостаточно широко, во-первых, из-за косности мышления технологов, а во-вторых, из-за отсутствия турбин на нужные параметры. Часто используют авиационные двигатели, выработавшие свой ресурс.  [c.61]

Во всех предыдущих примерах температура равновесной реакционной смеси была известна. При решении реальных технических проблем, включающих и работу химического реактивного двигателя, учитываются такие условия, когда реагирующие вещества загружаются в систему при известных температуре и составе и реагируют по существу при адиабатных условиях. В этих случаях конечная температура и состав реакционной смеси неизвестны. Определить максимальную конечную температуру и максимальное превращение можно при допущении, что система достигает состояния равновесия и что химическое равновесие рассчитывается одновременно с энергетическим балансом, когда неизвестны температура и состав.  [c.311]


Методы аналитического определения отдельных химических соединений достаточно хорошо отработаны и находят широкое применение при контроле атмосферных загрязнений, в промышленности, медицине и других отраслях. Сложность анализа состава отработавших газов автомобильных двигателей обусловлена многообразием и широким диапазоном изменения концентраций отдельных компонентов.  [c.20]

Многие из них образуют отдельные классы или группы, обладающие близкими физико-химическими свойствами. Задача анализа отработавших газов осложняется наличием в них паров воды, дисперсных частиц сажи, соединений свинца и фосфора, окислов железа и других элементов, входящих в состав конструкционных материалов, топлив и масел. Кроме того, автомобильному двигателю свойственны переменные режимы работы, большой диапазон отклонений токсических характеристик в зависимости от индивидуальных особенностей и технического состояния.  [c.20]

Практически на любом топливе можно достичь минимального уровня токсичности двигателя путем оптимизации процесса сгорания, физико-химической обработки ОГ (переход на дизельный цикл, введение нейтрализации и рециркуляции ОГ, применения присадок). В зависимости от структуры топливного баланса применяются и будут применяться жидкие и газообразные топлива разного химического состава — углеводородные, спиртовые, эфирные, аминные, водород и другие, а также присадки.  [c.52]

В системе выпуска двигателей происходят реакции окисления окиси углерода и углеводородов ОГ с избыточным кислородом. Эти процессы при относительно невысоких для реакций в газовой среде температурах (300. .. 800 С) проходят с малой скоростью. Для ускорения протекающих реакций используют катализаторы. Механизм действия катализатора сложен. В основе окислительных процессов, протекающих на катализаторах, лежат процессы диссоциативной адсорбции кислорода и продуктов неполного сгорания, вследствие чего скорость их химического взаимодействия резко возрастает.  [c.64]

Наиболее распространенным и практически важным видом химической коррозии металлов является газовая коррозия — коррозия металлов в газах при высоких температурах. Газовая коррозия металлов имеет место при работе многих металлических деталей и аппаратов (металлической арматуры нагревательных печей, двигателей внутреннего сгорания, газовых турбин, аппаратов синтеза аммиака и др.) и при проведении многочисленных процессов обработки металлов при высоких температурах (при нагреве перед прокаткой, ковкой, штамповкой, при термической обработке и др.). Поведение металлов при высоких температурах имеет большое практическое значение и может быть описано с помош,ью двух важных характеристик — жаростойкости и жаропрочности.  [c.16]

В послевоенные годы в машиностроении нача./юсь освоение новых типов турбин, двигателей, химических аппаратов, атомных реакторов и другого оборудования, работаюш,его при высоких температурах, в агрессивных средах и других специфических условиях. В связи с этим возникла необходимость обработки большого количества деталей из новых жаропрочных. нержавеюших. эрозионно-стойких, тугоплавких и других специ-альных сталей и сплавов.  [c.6]

Подшипники коленчатого вала являются одним из наиболее ответственных деталей двигателя. Химический состав применяемых в дизелеетроении подшипниковых сплавов приведен в табл. 17, а их физикомеханические свойства—в табл. 18.  [c.225]

В случаях, когда необходимо обеспечить высокую износоустойчивость деталей сложной конфигурации или деталей из алюминиевых или титановых сплавов, химическое никелирование способно не только дать большой экономический эффект, но и обеспечить решение таких технических задач, как создание легких, надежных и долговечных пар трения из дешевых малолегированных сталей, алюминиевых или титановых сплавов. Примером тому является, как указывалось выше, восстановление плунжерных пар топливных насосов дизельных тракторов, деталей гидравлических и пневматических устройств, покрытие колодцев корпусов, гидравлических насосов из литейного алюминиевого сплава АЛ-ЗА и т. п. При оценке экономической эффективности восстановления плунжерных пар топливных насосов тракторных двигателей химическим никелированием было установлено, что себестоимость восстановления каждой плунжерной пары на 34 коп. ниже перекомплектовки (с дополнительным изготовлением новых деталей). Восстановление плунжерных пар топливной аппаратуры всего парка тракторов Д-54 (или тракторов другого типа) этим методом может дать значительную сумму условной экономии в год и сократить расход дорогостоящей стали ХВГ.  [c.306]

Воздушный С.ме/ианный генераторный Парокислородный Водяной Воздух Боздух-f-nap Кислород+пар Пар 900—1 100 1 200—1 600 2 400—2 500 2 400—2 700 Химическое сырье топливо для печей и газовых двигателей Топливо для печей и газовых двигателей Химическое сырье для бытовых нужд Химическое сырье для резки и сварки металлов добавка к газу для бытовых нужд  [c.279]

ЖРД на свободных радикалах (рекомбинационные двигатели). Так называются теоретически возможные двигатели химического типа, использующие тепловую энергию, выделяющуюся при рекомбинации (воссоединении) в молекулы атомов или групп атомов, представляющих собой незаряженные части молекул. Г1римером такой реакции может служить соединение двух отдельных атомов водорода Н в молекулу водорода На- При реакции развивается огромная температура — около 10 000°С, а молекулярный вес расширяющегося газа минимален. Скорость истечения могла бы теоретически достичь 21 км/с [1.11]. Но чрезмерно высокая температура вынудит разбавлять свободные атомы водорода Н молекулами На, что понизит температуру и уменьшит скорость истечения. Таким путем может быть достигнута скорость истечения около 10 км/с [1.12] (при 50% свободных атомов в смеси). К сожалению, получение и хранение (в замороженном состоянии) свободных радикалов в широких масштабах представляет практически неразрешимую проблему из-за дороговизны и взрывоопасности [1.8].  [c.38]


Несмотря на конструктивные различия, у ЖРД и РДТТ много общего они относятся к двигателям одного типа — химическим. В таких двигателях химическая энергия топлива последовательно преобразуется сначала в тепловую, а затем в механическую энергию газообразных продуктов сгорания, вытекающих из сопла. Все это происходит в наиболее напряженной части двигателя, в его камере. Именно здесь совершаются сложные процессы, в результате которых ракета получает движущую ее силу — тягу.  [c.15]

В зависимости от задач исследования рассматривают техническую или химическую термодинамику, термодинамику биологических систем и т. д. Т е х и и ч е-ская термодинамика изучает закономерности взаимного превращения тепловой и механической энергии и свойства тел, участвующих в этих превращениях. Вместе с теорией теплообмена она является теоретическим фундаментом теплотехники. На ее основе осуш,ествля-ют расчет и проектирование всех тепловых двигателей, а также всевозможного технологического оборудования.  [c.6]

При подаче напряжения между расходуемым электродом-катодом 3 и затравкой-знодом 8 возникает дуга. Выделяющаяся теплота расплавляет конец электрода капли 4 жидкого металла, проходя зону дугового разряда, дегазируются, заполняют изложницу и затвердевают, образуя слиток 7. Дуга горит между расходуемым электродом и жидким металлом 5 в верхней части слитка на протяжении всей плавки. Сильное охлаждение слитка и разогрев дугой ванны металла создают условия для направленного затвердевания слитка, вследствие чего неметаллические включения сосредоточиваются в верхней части слитка, а усадочная раковина в слитке мала. Слитки ВДП содержат мало газов, неметаллических включений, отличаются высокой равномерностью химического состава, повышенными механическими свойствами. Из слитков изготовляют ответственные детали турбин, двигателей, авиационных конструкций. Масса слитков достигает 50 т.  [c.47]

Выбор вида топлива основывается прежде всего на экономических соображениях. Ограничение добычи нефти, истощение ее запасов и, как следствие, резкий рост цен на традиционные виды топлива для автомобильных ДВС заставляет проводить поиск равноценных заменителей углеводородных жидких топлив. Учитывая огромное количество эксплуатирующихся автомобилей, невозможность коренного изменения конструкций двигателя и автомобиля, развитую инфраструктуру автомобильного транспорта (систему хранилищ, автозаправочных станций), заменители традиционных топлив должны обладать физико-химическими свойствами, не требующими коренного изменения конструкции двигателя, топливной аппаратуры и системы хранеиия топлива на борту автомобиля.  [c.52]

Более эффективна подача в цилиндры двигателя не жидких топлив, а продуктов их разложения, особенно низкосортных топлив. Так, замена жидкого метанола СН3ОН газообразными продуктами его разложения Н2 и СО значительно повышает термический КПД двигателя, газообразная смесь с 67 о Н-2 и 33% СО (по объему) сгорает при а р = 2,4. Теплотворная способность газовой смеси выше на 22% по сравнению с исходным продуктом из-за высвобождения энергии разрыва химических связей.  [c.56]

Для повышения эффективности нейтрализации применяют растворы химических реактивов. Наиболее эффективными являются водные растворы сульфата натрия ЫааВОз, соды ЫагСОз с добавкой гидрохинона СвН Оз для предохранения от преждевременного окисления основных химреагентов. Сложные растворы непрактичны из-за быстротечности процесса очистки, большого уноса раствора при работе двигателя на максимальных нагрузках. Во многих случаях  [c.78]

Области применения сплавов. Титан и его сплавы используют там, где главную роль играют высокая удельная прочность и хорошая сопротивляемость коррозии. Титановые сплавы применяют в авиации (обшивка самолетов, диски и лопатки компрессора и т. д.), в ракетной технике (корпуса двигателей, баллоны для сжатых и сжиженных газов, сопла и т. д.) — в химическом машиност])оении (оборудование для таких сред, как хлор и его растворы, теплообменники, работающие в азотной кислоте и т. д.), судостроении (гребные винты,[обшивкн морских судов, подводных лодок и торпед), в энергомашиностроении (диски и лопатки стационарных турбин), в криогенной технике и т. д.  [c.320]

Жаропрочные сплавы. Эти сила[1ы используют для деталей, рабо тающих при гемпературах до 300 С (поршни, головки цилиндров, крыльчатки, лопатки и диски осевых компрессоров турбореактивных двигателей, обшивка сверхзвуковых самолетов и т. д.). Жаропрочмь е сплавы имеют более сложный химический состав, чем рассмотреипыс, выше алюминиевые сплавы. Их дополнительно легируют железом, никелем п титаном.  [c.331]


Смотреть страницы где упоминается термин Двигатель химический : [c.342]    [c.199]    [c.313]    [c.144]    [c.10]    [c.16]    [c.395]    [c.182]    [c.59]    [c.206]    [c.132]    [c.13]   
Космическая техника (1964) -- [ c.399 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте