Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Двигатель плазменный

Пример 6.3. Движение в космосе смолой тягой. В отличие от обычных реактивных двигателей плазменные или ионные двигатели развивают силу тяги F - mg, слишком малую для старта с поверхности Земли. Однако при старте с околоземной орбиты двигатель малой тяги может разогнать корабль до гиперболической скорости. Рассмотрим характерные особенности траектории разгона.  [c.50]


ПЛАЗМЕННЫЕ ДВИГАТЕЛИ-ПЛАЗМЕННЫЕ ИСТОЧНИКИ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ  [c.26]

Наиболее распространено применение плазменных покрытий в авиационной технике. При изготовлении и ремонте авиационных двигателей и деталей самолетов эти покрытия используются для восстановления размеров и для придания поверхности устойчивости против нагрева, истирания, различных видов износа и т. д. Только на одном из крупных американских предприятий по производству двигателей плазменное напыление применяется для 450 видов продукции [79]. Причем число напыляемых объектов увеличивается экспоненциально и наблюдается тенденция к замене детонационного способа напыления плазменным.  [c.240]

Благодаря высоким температурам в камерах сгорания ракетных двигателей и в плазменных установках потоки теплоты излучением становятся сопоставимыми с конвективными тепловыми потоками и даже могут превосходить их. При полете в сильно разреженном  [c.427]

В последние годы большое внимание привлекает к себе проблема непосредственного превращения тепловой энергии в электрическую в так называемых плазменных генераторах (иначе магнитогидродинамических — МГД — генераторах). Если отнести рис. 4-32 к такому генератору, то процесс 1-2 — приготовление рабочего тела — плазмы — с подводом тепла к ней он происходит при температурах порядка 2 000—3 000° С процесс 2-3 — получение электрической энергии в плазменном генераторе. Другой способ осуществления процесса 2-3, т. е. получение полезной энергии в верхней ступени — обычный, в тепловом двигателе. В этом случае процесс 1-2 — горение топлива В камере сгорания с образованием рабочего тела (в зависимости от условий горения их температура также может достигать  [c.194]

Миллионы модификаций электрических машин машины, напечатанные на пластике, плоские, как камбала машины-гарпии, оснащенные когтеобразными полюсами машины, внутри которых с неимоверными скоростями неслышно несутся алюминиевые стаканчики машины, катящиеся сами по себе или по рельсу МГД-генераторы, в которых проводником является движущаяся плазма сверхпроводящие двигатели с многоугольными роторами плазменные рули наших космических станций — все это ветви плодоносного древа, некогда посаженного Фарадеем.  [c.145]

Скорость ракет может быть повышена в 3 раза при переходе от ракет с химическим топливом к ракетам с атомным двигателем, но при этом температура газа достигнет 1930 °С. В ракетах с плазменными двигателями рабочие температуры достигнут 3300—6200 °С и даже тугоплавкие металлы и сплавы должны будут работать с охлаждением.  [c.280]


Установив это, нетрудно представить себе и плазменный электроракетный двигатель. Главный его узел — почти обыкновенная камера сгорания, где в пламени электрической дуги ионизуется, превращается в плазму какое-либо вещество. Образовавшаяся плазма устремляется в обыкновенное реактивное сопло и разгоняется в нем за счет охлаждения и расширения. Но это сопло окружено витками электрической обмотки — соленоидом. Сквозь ионизованный газ пропускают электрический ток. Возникает взаимодействие с электромагнитным полем окружающего сопло соленоида и газ получает дополнительное ускорение.  [c.187]

В плазменных электроракетных двигателях можно обеспечить скорость истечения реактивной струи в несколько десятков раз большую, чем в обычных химичес-  [c.187]

Сегодня плазменные электроракетные двигатели делают первые космические шаги. Так, они работали на борту советской автоматической космической станции Зонд-2 . Они использовались в качестве органов управления точной ориентацией станции в пространстве...  [c.188]

Плазменные и электростатические ракетные двигатели. М., ИЛ, 1962.  [c.418]

Неустойчивый процесс течения газового потока возникает не только в жидкостных ракетных двигателях. Подобные процессы возможны в воздушно-реактивных и в плазменных двигателях, а также в магнитогидродинамических генераторах, в ядерных силовых и энергетических установках.  [c.3]

Ниже описываются условия, при которых коэффициент теплоотдачи в кипящей воде в той или иной мере резко падает, что приводит к нежелательному или даже опасному скачку температуры поверхности теплообмена. Такую ситуацию нужно уметь предусматривать, например, в парогенераторах сверхвысоких давлений, в активной зоне атомных реакторов с жидкими теплоносителями, при жидкостном охлаждении таких устройств, как камеры сгорания реактивных двигателей, магнито-плазменные каналы, мощные генераторные лампы и т. п.  [c.163]

В связи с особыми условиями работы элементов газового тракта, в частности лопаток турбин, находящихся под воздействием агрессивной окислительной среды — продуктов сгорания топлива, детали газотурбинного двигателя (лопатки, жаровые трубы камер сгорания) должны иметь защитные покрытия, наносимые конденсацией (электронно-лучевым, вакуумно-плазменным и дру-  [c.77]

Плазменная сварка В 23 К 28/00 Плазменное напыление С 23 С 4/00 Плазменные (горелки, размещение в тигельных печах F 27 В 14/14 реактивные двигатели F 03 Н 1/00) Плакирование металлов механическое В 23 К 20/00 В 22 D 19/08)  [c.135]

Н. п. в природе, технике и лабораторных условиях. Неидеальной является плазма в жидких металлах, полупроводниках, электролитах (ЭЛТ, рис. 1), в глубинных слоях Солнца и планет-гигантов Солнечной системы, плазма белых карликов. Неидеальной является плазма рабочих тел в магнитогидродинамических генераторах на парах щелочных металлов (МТД), ракетных двигателях с газофазным ядерным реактором (ЯЭУ) плазма, возникающая в установках по исследованию термоядерного синтеза путём лазерного, электронного и взрывного обжатий мишени (см. Лазерный термоядерный синтез, Инерциальное удержание). Н. п. возникает за сильными ударными волнами при взрывах или при высокоскоростном ударе. В установках плазменной технологии неидеальная плазма возникает при импульсных электрических разрядах.  [c.253]

Если обратить МГД-генератор, пропуская через П. в магн. поле ток от внеш. источника, образуется плазменный двигатель, весьма перспективный для длительных космич. полётов.  [c.600]

Метод плазменного напыления используют для нанесения покрытий на трущиеся поверхности деталей типа вала, шейки коленчатого вала, постелей и блоков двигателей внутреннего сгорания, направляющих колонок и втулок штампов и пр.  [c.268]

Порошки коррозионно-стойких сталей и сплавов рассмотрены в табл. 3.17. Указанные порошки применяют для уплотнительных и защитных слоев на деталях двигателей внутреннего сгорания, вентиляторов, валов, подшипников энергетического и химического оборудования. Порошки наносят плазменным напылением и наплавкой.  [c.192]


Плазма — частично или полностью ионизированный газ, в котором концентрации положительных и отрицательных зарядов практически равны. Ионизация газа может быть вызвана температурным воздействием, электромагнитным излучением или бомбардировкой заряженными частицами. Низкотемпературная плазма (Т 10 ...10 К) используется в различных газоразрядных приборах (газовых лазерах, ионных приборах и Т.Д.), а также в технике (например, плазменных двигателях).  [c.15]

Роботы при плазменном нанесении покрытий применяются в основном при нанесении покрытий на детали сложной формы или при работе в изолированном объеме (например, камеры сгорания газотурбинных двигателей, их лопатки). Используют как специализированные роботы (АР-1, АР-2 фирмы Метко), так и промышленные с необходимыми характеристиками по нагрузке и скоростям перемещения. Примером полуавтомата для плазменного напыления может служить установка 15-ВБ, которая комплектуется плазменной установкой "Киев-7". Технологические возможности полуавтомата определяются по параметрам комплектующей плазменной установки, приведенным ниже.  [c.427]

В настоящее время разрабатывается два типа электрических ракетных двигателей — плазменный и ионный. В плазменном двигателе разогретое до полной ионизации рабочее тело поступает из плазмогенератора в разгонную камеру, где создано два поля — электростатическое и электромагнитное. Векторы напря-л<енности этих полей и продольная ось камеры взаимно перпендикулярны. Под действием электростатического поля заряженные частицы получают перемещение в поперечном направлении и при этом пересекают магнитные силовые линии. В результате возникает сила Лоренца, приводящая к ускорению частиц вдоль камеры. Таким образом создается направленный осевой поток, приводящий к возникновению тяги. Однако преднамеренно упрощенная нами схема ускорения частиц не наилучшая. В настоящее время основные надежды при разработке плазменного двигателя возлагаются на радиальное электростатическое поле, создаваемое коаксиальными электродами. Это позволяет освободиться от специально устанавливаемых тяжелых электромагнитов. Но не в этом суть дела. Плазменный двигатель позволяет получить удельную тягу, значение которой приближается к десяти тысячам единиц, что на порядок выше, чем в химических Двигателях. Попятно, однако, что плазменный двигатель может работать в условиях только достаточно глубокого вакуума и основная его особенность—малая тяга, существенно меньшая Веса двигателя и энергетической установки, вместе взятых,  [c.199]

Ниже рассматриваются технологические особенности п[ юцссса плазменного напыления деталей газотурбинных двигателей.  [c.437]

Электрические двигатели являются в настоящее время наиболее перспективными для осуш,ествления длительных полетов в пределах Солнечной системы. Они могут применяться для корректировки орбиты спутников Земли и в ряде других случаев. Среди электрических двигателей на первое место могут быть поставлены плазменные двигатели, в которых реактивная тяга создается потоком плазмы. Энергия сообщается плазме нагреванием (за счет джоу-лева нагрева плазмы протекающим через нее током) или ускорением плазмы магнитным полем. Магнитное поле в плазменных магнитогидродинамических двигателях (МГД) не только служит для ускорения плазмы, но и предотвращает ее соприкосновение со стенками камеры и выходного сопла. Так как длительное удержание плазмы магнитным полем осуществить трудно, то плазменные двигатели работают в импульсном режиме.  [c.228]

Раскрой и сборка пакетов для прессования. Наиболее распространенным видом предварительных заготовок, применяемых для изготовления композиционных материалов методом диффузионной сварки, являются плоские элементы, состоящие из одного слоя упрочнителя, закрепленного тем или иным способом. В связи с этим в дальнейшем операции раскроя заготовок и сборки их в пакеты рассмотрим на примере предварительных заготовок, полученных методом намотки с последующим закреплением волокон плазменным напылением или проклеиванием. Схематически эти операции представлены на рис. 58 (по данным работ [31, 98]). Из монослойных заготовок вырезают ножницами, гильотинными ножницами, вырубают в специальных штампах либо получают другими методами механической обработки элементы более или менее сложной конфигурации, являющиеся слоями — сечениями изделия. Число этих заготовок определяется толщиной готового изделия, количеством упрочнителя и матрицы в предварительных заготовках, если упрочнитель связан матрицей, либо количеством упрочнителя и толщиной фольги матрицы, если упрочнитель связан клеем. На рис. 58. показан типовой раскрой двух видов изделий плоского полуфабриката в виде листа и изделия более сложной формы — лопатки двигателя. Поскольку наряду с од-ноосноармированным композиционным материалом в технике применяют изделия из материала, в котором имеется волокно, ориентированное, в соответствии с возникающими в этом изделии  [c.125]

А вот там — их царство. Там, далеко, не всегда требуется могучий кратковременный рывок. Там и небольшая, но постоянно действующая сила может сообщить космическому кораблю гигантское ускорение. Расчеты показывают, что полет химической ракеты к самой дальней планете Солнечной системы Плутону должен занять около 45 лет. А если в пути включить плазменный элек-троракетный двигатель весьма скромной мощности, продолжительность этого полета сократится в десятки раз.  [c.188]

Технология плазменного напыления покрытий на детали применяется для нанесения защитных покрытий различного назначения, например на детали двигателей, а также на оснастку и инструмент (прессформы, штампы, кокили и т.п.), при этом ресурс деталей увеличивается в 2—4 раза, а стойкость инструмента повышается в 5—7 раз.  [c.79]


Коаксиальные ускоригели плазмы плазменных двигателей F 03 Н 1/00 Ковка <В 21 (J, К при высадке металла J 5/08 давлением нневмогидравлической среды J 5/04 изготовление деталей машин ковкой или штамповкой К 25/00 листовых изделий и труб D 31/06 манипуляторы для обработки изделий в ковочных машинах J 13/10 ручная J 19/00-19/04 в штампах J 5/02) подъемные краны, используемые при ковке изделий В 66 С 17/18) Ковочные молоты В 21 J (7/00-7/46 комбинированные с ковочными прессами 11 /00 прессы 9/00-9/20) Ковши литейные (В 22 D 41/00-41/12, 37/00, 39/00, 43/00 для шлака С 21 В 3/10) поворотные для регулирования подачи или уровня водь7 в паровых котлах F 22 D 5/04)  [c.94]

Расход, регулирование в шиберных за1 ворах F 16 К 3/32 Расширение тепловое, исследование G 01 N 25/16 Расширители труб В 21 D 39/(08-20) Рафинирование металлов или сплавов, общие способы С 22 В 9/00-9/14 чугуна С 21 С 1/00-1/10) Рашпили [восстановление насечки травлением С 23 F 1/06 по дереву В 27 G 17/06 В 23 D изготовление 73/(04-14) по мспшллу 71/(00-10)) обработка абразивом В 24 С 1/02] Реактивные [гидротурбины F 03 В 3/00-3/18 Двигатели <на летательных аппаратах В 64 (D 27/(16-20) несущие винты с приводными реактивными двигателями С 27/18) плазменные F 03 Н 1/00 применение для управления самолетами В 64 С 15/(02-14) размещение и монтаж на транспортных  [c.160]

ПЛАЗМЕННЫЕ ДВИГАТЕЛИ — космич, реактивные (ракетные) двигатели с рабочим веществом в плазменной фазе, использующие для создания и ускорения потока плазмы электрич. энергию. П. д. представляют собой соответствующим образом оптимизированные плазменные ускорители. П, д.— составная часть семейства злектроракетных двигателей (ЭРД), в к-рое входят также ионные и эл.-нагревные двигатели. При эл.-магн. ускорении плазмы скорость истечения существенно превосходит тепловую скорость, характерную для хим. (тепловых) ракетных двигателей, что в соответствии с ф-лой Мещерского — Циолковского (см. Механика тел переменной массы) расширяет диапазон достижимых характеристич. скоростей и увеличивает долю полезной нагрузки на космич. летат, корабле (КЛА). П. д. функционируют на борту КЛА в условиях невесомости либо очень малых гравитац. полей. П. д. имеют малую тягу (10" —Ю Н), работают длит, время (>10 ч) при большом числе включений. С учётом огранич. возможностей совр. космич. энергетики осн. критериями оптимизации П. д. являются весовые и габаритные характеристики злектроракетных двигат, установок (ЭРДУ), ресурс их работы, энергетич. цена тяги и/2т (и — скорость истечения, т) = Ри 2П — тяговый кпд, где Р — тяга, N — потребляемая электрич. мощность), уменьшающаяся при заданной скорости истечения по мере роста т .  [c.609]

Схема эрозионного импульсного плазменного двигателя спутника ЬЕ8-6 1 — брусок тефлона г — катод з — анод 4 — струя плазмы з — устройство для поджига разряда в — буртик 7 — конденсатор 8 — пруншна подачи.  [c.609]

Применение П. у. Первые П, у. (рельсотроны) появились в сер. 1950-х гг. С тех пор эти системы непрерывно изучаются и совершенствуются. Они нашли применение как плазменные двигатели (см. также Электро-ракетные двигатели), в технологии для чистки поверхностей (.методом катодного распыления), нанесения металлич. плёнок на разл. поверхности, в исследованиях по ионосферной аэродинамике, в термоядерных исследованиях (в качестве инжекторов плазмы), плаз-мохимии, в лазерной технике, для активных экспериментов в космосе и т. д.  [c.612]

Существует ряд явлений, родственных Э., в к-рых перенос носителей заряда осуществляется не электрич. полем, а градиентом темп-ры (см. Термоэлектрические явления), звуковыми волнами (см, Акустоэлектрический эффект), световым излучением (см. Увлечение электронов фотонами) и т. п. Э. жидкостей, газов и плазмы обладает рядом особенностей, отличающих её от Э. твёрдых тел (см. Электрические разряды в газах, Электрический пробой. Электролиз). Э. М. Эпштейн. ЭЛЕКТРОРАКЁТНЫЕ ДВИГАТЕЛИ (электрореактивные двигатели, ЭРД)—космич. реактивные двигатели, в к-рых направленное движение реактивной струи создаётся за счёт электрич, энергии, Электроракетная двигательная установка (ЭРДУ) включает собственно ЭРД, систему подачи и хранения рабочего вещества и систему, преобразующую электрич. параметры источника электроэнергии к номинальным для ЭРД значениям я управляющую функционированием ЭРД, ЭРД—двигатели малой тяги, действующие в течение длит, времени (годы) на борту космич. летательного аппарата (КЛА) в условиях невесомости либо очень малых гравитац. полей. С помощью ЭРД параметры траектории полёта КЛА и его ориентация в пространстве могут поддерживаться с высокой степенью точности либо изменяться в заданном диапазоне. При эл.-магн. либо эл.-статич. ускорении скорость истечения реактивной струи в ЭРД значительно выше, чем в жидкостных или твердотопливных ракетных двигателях это даёт выигрыш в полезной нагрузке КЛА. Однако ЭРД требуют наличия источника электроэнергии, в то время как в обычных ракетных двигателях носителем энергии являются компоненты топлива (горючее и окислитель). В семейство ЭРД входят плазменные двигатели (ПД), эл.-хим. двигатели (ЭХД) и ионные двигатели (ИД).  [c.590]

Для наплавки износостойких и жаростойких слоев газопламенным и дуговым (неплавящимся электродом) способами применяют литые присадочные прутки из сормайта, стеллита и релита [Пр-С1, Пр-С2, Пр-С27, Пр-ВЗК, Пр-ВЗК-Р (ГОСТ 21449-75) Релит-3, Релит-ТЗ (ТУ 48-42-34—70), АН-ЛЗ (ТУ 26-02-769—77)]. Литые кольца марок ЭП (ТУ 14-131-133—73, ТУ 14-131-344-77) используют для плазменной наплавки клапашв автомобильных двигателей [48].  [c.149]

Большинство суперсплавов производят, комбинируя вакуумную индукционную выплавку с электродуговым или с элек-трошлаковым переплавом, — приемы, разработанные в 1950-х и 1960-х гг. Процессы переплава были усовершенствованы управление ими позволило добиться хороших результатов в ограничении макросегрегации и снижении микросегрегации. Поскольку конструкторы двигателей требовали все новых улучшений качества, металлурги добились большей чистоты сплавов (ибо было показано, что повышение чистоты ведет к явному улучшению надежности вращающихся деталей). Сейчас, чтобы еще успешнее управлять главными процессами выплавки, стремятся выяснить возможности двойного вакуумного электродугового переплава с расходуемым электродом, а также рафинирования путем электронно-лучевого переплава на холодном поду или плазменного переплава. Это новые разработки, они сочетают различные процессы выплавки чтобы достичь максимально высокого качества продукции.  [c.123]

В.М. Иевлев развивал концепцию газового или плазменного реактора. Е.С. Кузнецов предлагал своим сотрудникам регаать различные задачи для плазменного реактора ракетного двигателя. В частности, были проведены нейтроннофизические расчеты такого реактора (с учетом внеганего замедления нейтронов).  [c.768]


Смотреть страницы где упоминается термин Двигатель плазменный : [c.325]    [c.2]    [c.131]    [c.30]    [c.220]    [c.615]    [c.149]    [c.159]    [c.42]    [c.306]    [c.610]    [c.319]    [c.420]    [c.444]    [c.47]   
Основы техники ракетного полета (1979) -- [ c.199 ]



ПОИСК



Импульсные плазменные двигатели

Квазистационарные и стационарные плазменные двигатели

Плазменное эхо

Применение плазменного напыления для восстановления деталей самолетов и двигателей. М. П. Малик

Турчи П. Импульсные плазменные двигатели для межорбитальных транспортных аппаратов Астронавтика и ракетодинамика ВИНИТИ



© 2025 Mash-xxl.info Реклама на сайте