Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Максвелла постоянная

Максвелла постоянная 104, 105 Модуляция рассеянного света 26, 83  [c.510]

Уравнение (1-10.14) показывает, что член т Vv описывает превращение работы девиаторных напряжений во внутреннюю энергию. В классической гидромеханике предполагается, что жидкости с постоянной плотностью могут увеличивать внутреннюю энергию только за счет возрастания энтропии. Действительно, можно использовать соотношение Максвелла  [c.51]

Перенос тепла излучением и оптическая термометрия тесно связаны, поскольку в обоих случаях необходимо иметь соотношение между термодинамической температурой и количеством и качеством тепловой энергии, излученной поверхностью. В конце 19 в. на основе только классической термодинамики и электромагнитной теории были получены два важных результата. Первый — закон Стефана (1879 г.), согласно которому плотность энергии внутри полости пропорциональна четвертой степени температуры стенок полости. Второй —закон смещения Вина (1893 г.), который устанавливал, что, когда температура черного тела увеличивается, длина волны максимума излучения Хт уменьшается, так что произведение ХтТ сохраняется постоянным. Доказательство закона Стефана основано на трактовке теплового излучения как рабочей жидкости в тепловой машине, имеющей в качестве поршня подвижное зеркало, и использовании электромагнитной теории Максвелла, чтобы показать, что действующее на поверхность давление изотропного излучения пропорционально плотности энергии. Закон Вина вытекает из рассмотрения эффекта Доплера, возникающего при движении зеркала. В обоих законах появляется постоянный коэффициент пропорциональности, относительно которого классическая термодинамика не могла дать информации.  [c.312]


В середине XIX в. были также накоплены сведения об электро динамической постоянной, фигурирующей при переходе от электрических к магнитным единицам. Она имеет размерность скорости и по значению очень близка к скорости света в вакууме. Наилучшие измерения, проведенные электромагнитными методами, приводили к значению (299 770 30) 10 см/с. Имеются данные, что столь хорошее совпадение этих констант, казавшееся в те времена случайным, стимулировало исследования Максвелла по созданию единой теории распространения электромагнитных волн. После появления этой фундаментальной теории уже не могло быть сомнений в том, что скорость света в вакууме и электродинамическая постоянная — это одна и та же константа, а совпадение результатов измерений ее значения, выполненных различными методами, является доказательством универсальности теории Максвелла, справедливой для любых электромагнитных волн. Ниже будет охарактеризован современный способ прецизионного определения скорости света в вакууме.  [c.46]

Дальнейшее исследование показало, однако, что показатель преломления зависит от частоты (дисперсия) и, значит, теория Максвелла нуждается в усовершенствовании нельзя пользоваться непосредственно значением диэлектрической проницаемости, заимствованной из опытов с постоянным электрическим полем (статическая диэлектрическая проницаемость), а надо принять в расчет значение диэлектрической проницаемости, характеризующей среду под действием быстропеременного электрического поля (о динамической диэлектрической проницаемости см. ниже).  [c.39]

Это сопоставление показывает превосходное согласие, оправдывающее ту точность измерения, на которую указывают авторы. Прекрасное совпадение скорости световых волн и скорости радиоволн вновь подтверждает справедливость электромагнитной теории света, напоминая, что первым аргументом Максвелла в пользу этой теории было тогда еще грубо установленное равенство скорости света и электродинамической постоянной, определяющей скорость распространения электромагнитных волн.  [c.427]

Лондонами в дополнение к уравнениям Максвелла были получены уравнения для электромагнитного поля в таком сверхпроводнике, из которых вытекали его основные свойства отсутствие сопротивления постоянному току и идеальный диамагнетизм. Однако в силу того, что теория Лондонов была феноменологической, она не отвечала на главный вопрос, что представляют собой сверхпроводящие электроны. Кроме того, она имела еще ряд недостатков, которые были устранены В. Л. Гинзбургом и Л. Д. Ландау.  [c.266]


При рассмотрении свойств макроскопических сверхпроводников, которое было дано в разделе 2, необходимо строго разграничивать так называемые полные токи п токи Мейснера. Первые наводятся в многосвязных проводниках и поддерживают полный магнитный поток постоянным, а вторые представляют собой экранирующие поверхностные токи, которые обеспечивают равенство индукции нулю внутри сверхпроводящего материала. Конечно, такое деление носит искусственный характер, так как оба тока имеют одну и ту же внутреннюю природу. Мы пользуемся этим разделением для того, чтобы иметь возможность применить для решения задачи уравнения Максвелла для двух предельных случаев, а именно для случая бесконечной проводимости и случая идеального диамагнетизма. Мы снова подчеркиваем, что эти два условия различны и в электродинамике Максвелла их нельзя смешивать.  [c.641]

Максвелл [30] обнаружил, что только [3 зависит от массы изотопа, а два остальных параметра а и у остаются постоянными.  [c.687]

Здесь Н —полное поле (которое лучше обозначить В), возникающее как от токов в теле, так и от внешнего поля параметр Л — постоянная, характерная для материала. Предположим для простоты, что и магнитная восприимчивость и диэлектрическая постоянная равны единице, так что нет необходимости различать В и Н, а также Е и D. В этом случае уравнения Максвелла в гауссовых единицах гласят  [c.692]

Если жесткость поперечного сечения стержня на участке постоянна, то каждый интеграл формулы Максвелла—Мора (185) можно подсчитывать через произведение площади о) эпюры усилия от заданных сил (рис. 176) на координату эпюры такого же усилия от единичной фиктивной обобщенной силы (обязательно прямолинейной), приходящуюся против центра тяжести первой эпюры.  [c.308]

При дифференцировании функции Лагранжа — Максвелла будем считать индуктивности и La постоянными, а взаимную индуктивность М зависящей от угла поворота якоря ф.  [c.284]

Поле измерительной катушки поддерживалось постоянным. Образцы вмели цилиндрическую форму диаметром 12 мм и длиной 100 мм, отжигались в вакууме и перед измерением тщательно размагничивались. Измерения осуществлялись на установке, состоящей из моста переменного тока Максвелла, генератора ГЗ-34, селективного вольтметра В6-2 и миллиамперметра. Погрешность измерения составляла 0,7%.  [c.102]

Так как это равенство заключает в себе указанное значение в, то скорость <0 будет изменяться при всяком длительном изменении мощности, отдаваемой машиной. Следовательно, механизм не будет сохранять постоянную угловую скорость независимо от изменений мощности Максвелл указал, что собственно этот механизм скорее следует назвать модератором , чем регулятором.  [c.194]

Ту же особенность мы находим и в других областях физики. Так, при прохождении электрического тока постоянной силы через покоящийся проводник, вблизи которого находятся неподвижные магниты или железные массы, мы нигде, кроме питающей батареи, не находим ни малейшего изменения с течением времени тем не менее, Максвелл объясняет свойства электрического тока, исходя из того, что его сущность состоит в интенсивном движении, которое происходит частью внутри проводника, частью в Окружающем эфире.  [c.470]

Указанные модели вязкоупругого тела становятся весьма наглядными, если их представить в зиде комбинации простейших элементов —упругого и вязкого. Упругий элемент имеет вид пружины (см. рис. 7.4, а) с линейной характеристикой, т. е. о = Ее. Вязкий элемент представляет собой цилиндр (рис. 7.4, б) с вязкой жидкостью, в котором перемещается поршень с отверстием или с зазором вдоль стенки цилиндра, благодаря чему жидкость может перетекать из одной части цилиндра в другую. При постоянной силе поршень перемещается с постоянной скоростью, или, иначе говоря, а = В модели Максвелла деформации в упругом и вязком элементах суммируются, а напряжения одинаковы. Это соответствует последовательному соединению элементов (рис. 7.5, а). В модели Фойгта суммируются напряжения в элементах, а их деформации одинаковы. Такая картина получится, если элементы соединить параллельно (рис. 7.5, б).  [c.757]

Модели Фохта и Максвелла качественно объясняют многие свойства реальных тел, в частности явление релаксации. В модели Фохта она выражается в том, что если к телу в момент i = О приложить постоянную силу f(t) = /о, то смещение будет плавно нарастать от нуля до значения fo/ i. Решение уравнения (7.4) относительно смещения u t) дает следующую зависимость.  [c.211]


Мора-Максвелла формула 151 Мосты измерительные постоянного тока с гальванометром 491, 492  [c.549]

Максвелла —Мора формула 114, 115 Малопластичные материалы — Запас прочности 538 Масса приведенная для стержней постоянного сечения 404, 405  [c.632]

Когда Г. А. Лоренц начинал свою творческую деятельность, электромагнитная теория Максвелла уже добилась признания. Но основы этой теории были исключительно сложными, и это не позволяло выявлять ее основные черты с достаточной ясностью. Правда, понятие поля отвергало представления о дальнодействии, но электрическое и магнитное поля мыслились еще не как исходные сущности, а как состояния континуальной весомой материи. Вследствие этого электрическое поле казалось раздвоенным на поле вектора электрической напряженности и поле вектора диэлектрического смещения. В простейшем случае оба эти поля были связаны диэлектрической постоянной, но в принципе они считались независимыми и изучались как независимые реальности. Аналогично обстояло дело и с магнитным полем. В соответствии с этой основной концепцией пустое пространство рассматривалось как частный случай весомой материи, в котором отношение между напряженностью и смещением проявляется особенно просто. Из такого представления вытекало, в частности, что электрические и магнитные поля нужно было считать зависимыми от состояния движения материи, являющейся носителем этих полей.  [c.10]

Для этого удобно использовать уравнение Максвелла (6-14), которое показывает, что изменение энтропии с давлением при постоянной температуре противоположно по знаку изменению удельного объема с температурой при постоянном давлении.  [c.119]

Эта формула была получена одновременно (1880 г.) Г. А. Ло-рентцом на основе электромагнитных представлений о свете и Л. Лоренцом, который развивал теорию света, в известной степени являющуюся предшественницей теории Максвелла. Выражение (156.19) и поныне известно под названием формулы Лоренц—Ло-рентца. Принимая во внимание, что для данного вещества и данной длины волны величины е, т, Wq, постоянны, можно придать формуле Лоренц—Лорентца следующий вид  [c.558]

Пусть атомарный газ находится в замкнутом объеме при изотермических условиях. В том же объеме присутствует, естественно, и электромагнитное поле, обусловленное тепловым излучением. Как было выяснено в главе XXXVI, рассматриваемая система, состоящая из газа и теплового излучения, будет находиться в термодинамическом равновесии, если газ и излучение обладают одной и той же температурой, атомы подчинены распределению Максвелла—Больцмана, а излучение — формуле Планка. Однако термодинамическое равновесие системы не означает, что энергия каждого атома газа сохраняется неизменной. Между атомами и полем осуществляется постоянный обмен энергией. Атомы излучают и поглощают фотоны, переходя из одних состояний в другие происходит и обмен импульсами между атомом и полем — импульс изменяется в процессе испускания и поглощения фотона (см. 184). Между атомами газа осуществляется также обмен импульсами и энергией при их столкновениях между собой. Однако ни один из этих процессов не нарушает термодинамического равновесия системы в целом и соответствующих ему законов распределения атомов по энергиям и скоростям, равно как и распределения энергии излучения по спектру.  [c.735]

Непосредственный опыт всегда очевиден, и из него в кратчайшее время можно извлечь пользу ,— мудро заметил позднее выдающийся австрийский физик Л. Бо.аьцман. Используя данные Максвелла, соотечественник Бо и.цмана Й. Лошмидт в 1865 г. впервые в истории науки вычисляет размеры молекул воздуха и их число в 1 СМ при нормальных условиях. Впоследствии это число получило название постоянной Лошмидта о- Проследим  [c.68]

Работы Кренига и Клаузиуса не позволяли вычислить входящий в (ЗЗ) квадрат скорости молекул v . Бернулли, Кренит и Клаузиус полагали скорость всех молекул одинаковой и равной некоей постоянной величине. Но молекулы газа сталкиваются, обмениваются энергией и, следовательно, имеют самые различные скорости. Вместо невыполнимой задачи расчета скорости отдельных молекул Максвелл в 1860 г. указал на принципиально иной путь расчета средних величин, характеризующих состояние газа. Он предложил распределить все молекулы по группам в соответствии с их скоростью и дал метод расчета числа молекул в таких группах. Максвелл использует механическую модель газа, состоящего из большого числа твердых и совершенно упругих шаров, действующих друг на друга только во время столкновений. Если свойства подобной системы тел соответствуют свойствам газов,— отмечаег он,— то этим будет создана важная физическая аналогия, которая может привести к более правильному познанию свойств материи . (Большинство цитат этого параграфа, за особо оговариваемыми исключениями, взяты из [49, 50].)  [c.73]

Распространение принципа относительности на электромагнитные явления — на все физические явления — означало, что необходимо было найти такие преобразования зравнений Максвелла, чтобы при переходе от одной инерциальной системы к другой их вид не менялся и скорость света оставалась постоянной. Эйнштейн строго показывает, что этим требованиям удовлетворяют преобразования Лоренца (83). При этом из формальных математических выводов они приобретают ясный физический смысл преобразований координат и времени при переходе от одной инерциальной системы к другой. Отметим разницу в пути, которым шли к соотношениям (83j Лоренц и Эйнштейн. Лоренц нашел их... как гипотезу о сокращении размеров тел в процессе их движения. Эйнштейн показал, что в постулате относительности речь идет не только о гипотезе сокращения тел, но и о новой трактовке времени [67]. Время, бывшее незыблемым, абсолютным, меняет свое течение в различных системах отсчета. В движущихся системах течение времени замедляется  [c.134]


В начале XX в. принципы классической механики подвергались критике, в результате чего появилась релятивистская и квантовая механика. Не входя в подробности, можно указать, что принципы теории относительности, развитые Дж. К. Максвеллом (1831—1879), X. А. Лоренцем (1853—1928), А. Пуанкаре (1854— 1912) и А. Эйнштейном (1879—1955), коренным образом меняют наши обычные представления о пространстве и времени. Теория относительности методом научного анализа еще раз подтвердила справедливость марксистско-ленинского положения о единстве движущейся материи со временем и пространством. В релятивистской механике время не является универсальным понятием, а имеет л1естное значение. Связь наблюдателей, находящихся в различных движущихся системах, осуществляется при помощи световых сигналов, причем постулируется, что ito-рость света — универсальная постоянная для всех систем. Релятивистская механика не отменяет классическую механику, а лишь указывает па ее ограниченность и на несправедливость ее законов там, где скорость движения тела соизмерима со ско-росгью света.  [c.143]

Малость размеров тела ио сравнению с глубиной проникновения позволяет не решать в данном случае уравнение Максвелла, поскольку вектор-потенциал А (г) мало отличается от его значения в отсутствие тела в поле. В постоянном магнитном поле Н воктор-потенцнал равен  [c.905]

Демонстрацией случая, когда не выполняется условие равенства ускорений, может служить взвешивание на рычажных весах диска или маятника Максвелла — массивного диска, подвешенного на двух нитях, обмотанных вокруг оси диска (рис. 89). Законы движения диска Мак-спелла мы рассмотрим в главе о движении твердого тела ( 94), Как покажет это рассмотрение, движение диска Максвелла таково, что диск опускается вниз и поднимается вверх с направленным вниз постоянным ускорением, составляющим некоторую долю ускорения силы тяжести (как если бы он скатывался с не очень крутой горы и яатем вкатывался на другую такую же гору). Опыт со взвешиванием диска Максвелла на рычажных весах показывает, что если уравновесить покоящийся диск на весах, то при движении диска равновесие нарушается. Для восстановления равновесия нужно снять часть груза с другой чашки весов. Диск оказывается легче как при движении вниз, так и при движении вверх (это и понятно, так как ускорение диска в обоих случаях направлено вниз). Равновесие на рычажных (как и на пружинных) весах дает право считать массы равными только при условии, что обе сравниваемые массы имеют одинаковое ускорение по отношению к неподвижной системе отсчета, а при движении диска это условие не соблюдено.  [c.182]

Итак, при переходе от механического масштаба к более грубым сначала (шкала Т/< А <Ста) изменяется поведение скорости частицы (формула Эйнштейна (4.13)), в то время как для смещения еще справедливы динамические асимптотики (4.21), определяемые начальными условиями. Затем (шкала At Xг ), по мере достижения распределением по скоростям равновесия — распределения Максвелла (и дисперсией скорости постоянного значения, соответствующего равнораспределению кинетической энергии), начальные условия забываются , и уже средний квадрат смещения описывается формулой Эйнштейна (4.23).  [c.47]

Как известно, различают два типа вязкоупругих сред среды, кривые ползучести которых имеют горизонтальпую асимптоту ), и среды с квазивязким течением (тела типа Максвелла). В связи с этим отметим, что если при монотонно возрастающей нагрузке решение уравнения (39.7) всегда существует, то при постоянной внешней нагрузке решепне уравнения (39.8) будет существовать только для вязкоупругих тел типа Максвелла (и, следовательно, разрушение нмеет место прп сколь угодно малых нагрузках).  [c.315]

Классическим примером внимания ученых- фунда-менталистов конца XIX века к нуждам практики электромашиностроения стала статья Максвелла О теории поддержания электрических токов механическим путем без применения постоянных магнитов .  [c.137]

Спектр нейтронов. Рождающиеся при делении нейтроны имеют энергетический спектр, даваемый уравнением (5.16). В реакторах, использующих воду в качестве замедлителя, нейтроны теряют свою энергию при столкновении с ядрами замедлителя до тех пор, пока их энергия не станет близкой к тепловой. Поэтому полный поток нейтронов состоит из тепловой, промежуточной (или эпитепловой) и быстрой групп. К группе быстрых нейтронов принято относить нейтроны с энергией выше 0,625 эв . Энергетическое распределение нейтронов тепловой группы зависит от температуры среды. Для нейтронов, достигших полного теплового равновесия, энергетическое заспределение, как и в идеальном газе, подчиняется закону Больцмана—Максвелла. Наиболее вероятная энергия нейтрона равна kT, где k — постоянная Больцмана, а Т — абсолютная температура. Ниже приведены энергия и скорость нейтронов в зависимости от температуры  [c.127]

Трение при несовершенной упругости (рис. 3). В 1939 г. было высказано мнение [6], что сила трения твердых тел обусловлена реологическими свойствами последних. В дальнейшем это положение получило развитие в работах отечественных и зарубежных ученых [19]. К наиболее интересным исследованиям в этом направлении относятся работы А. Ю. Ишлинского и И. В. Крагельского [7], В. С. Щедрова [8], Д. М. Толстого [9], Барвела и Рабиновича [10]. С помогцьго уравнения вязко-упругой среды Максвелла—Ишлинского получила теоретическое объяснение обобщенная экспериментальная зависимость силы внешнего трения от постоянной скорости [11] (рис. 3).  [c.178]

Связь между абсолютными коэфнциеитами преломления и диэлектрической постоянной установлена теоретически Максвеллом следующей формулой  [c.380]

Для изотропной, неэлектропроводпой (о =0) среды с постоянными магнитной и диэлектрической проницаемостями ((.I, e = onst) и при отсутствии в ней свободных зарядов (р=0) уравнения Максвелла (1-37) су-3-1099 33  [c.33]

Каждое из четырех соотношений Максвелла может быть доказано подобным образом, если раооматривать цикл, составленный парами линий, вдоль которых остаются постоянными свойства, соответствующие индексам пр1и соотношениях.  [c.187]


Смотреть страницы где упоминается термин Максвелла постоянная : [c.92]    [c.255]    [c.309]    [c.151]    [c.322]    [c.43]    [c.89]    [c.109]    [c.544]    [c.755]    [c.234]    [c.236]    [c.419]    [c.698]   
Молекулярное рассеяние света (1965) -- [ c.104 , c.105 ]



ПОИСК



Максвелл

Максвелла поверхности постоянной фазы



© 2025 Mash-xxl.info Реклама на сайте