Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

СВЕРХПРОВОДЯЩИЕ МАТЕРИАЛЫ

Сверхпроводящие материалы уже используются в электромагнитах. Ведутся исследования, направленные на создание сверхпроводящих линий электропередачи.  [c.152]

Сверхпроводящие материалы. М. Металлургия. 1976.  [c.453]

По мере истощения запасов нефти и газа и все большего использования их в качестве сырья для химической промышленности энергетика должна переводиться на дешевый уголь и ядер-ное топливо. Себестоимость угля, добываемого карьерным способом (например, в Экибастузском и Канско-Ачинском месторождениях СССР), сопоставима с себестоимостью нефти и газа, но его транспортирование обходится гораздо дороже и сопровождается потерями. Поэтому ставится задача сооружения ТЭС в местах добычи угля с передачей электроэнергии в другие районы через Единую энергетическую систему (ЕЭС), но это удорожает строительство и приводит к потерям электроэнергии в сетях. По подсчетам академика В. И. Попкова и его сотрудников, за год только на коронный разряд теряется около 100 МВт-ч электроэнергии на 1 км линии переменного тока. Огромная протяженность линий электропередач в нашей стране приводит к большим потерям. В будущем предполагается заключение проводов в специальные газовые оболочки, предотвращающие разряд, и переход на сверхпроводящие материалы (пока несуществующие), сохраняющие свои свойства при нормальных температурах.  [c.152]


Широко развернувшиеся вслед за этим поиски новых сверхпроводников привели к волнующим открытиям. Во многих странах были обнаружены новые сверхпроводящие материалы, только уже не металлы, а сплавы и особые соединения, которые не теряли сверхпроводящих свойств даже при очень больших токах и в сильных магнитных полях. Этими материалами оказались в основном сплавы и соединения ниобия. Теперь можно было приступать к созданию проволоки, кабелей и шин из сверхпроводящих материалов, к техническому использованию сверхпроводимости.  [c.155]

Такое же положение и с энергетическими термоядерными установками, которые, возможно, удастся создать в не слишком отдаленном будущем. Существенным элементом этих генераторов, топливом для которых будет служить обыкновенная вода, также является мощная магнитная система с такими высокими значениями магнитного поля, которые не удастся обеспечить при помощи обычных магнитных систем. Эта задача, по-видимо-му, неразрешима без применения сверхпроводящих материалов.  [c.158]

Таким образом, оказывается, что будущее нашей энергетики в большой степени зависит от создания мощных сверхпроводящих магнитных систем. К счастью, перспективы тут весьма благоприятны. Непрерывно понижается стоимость пока еще весьма дорогих сверхпроводящих материалов, накапливается опыт работы с низкотемпературным оборудованием и непосредственно с крупными сверхпроводящими магнитными системами. Можно с уверенностью утверждать, что уже в ближайшие годы вполне реальна постройка сверхпроводящих магнитных систем с полем в несколько Тесла, создаваемым в рабочем объеме порядка кубических метров.  [c.158]

Вот уже более полувека в патентные бюро разных стран непрерывным потоком текут заявки на изобретения, авторы которых предлагают передавать электроэнергию по кабелям, работающим при низких температурах, в том числе по сверхпроводящим. Однако лишь недавно, с открытием новых сверхпроводящих материалов, эта идея смогла быть воплощена в жизнь, хотя и теперь — лишь в виде экспериментальных установок. Первые сверхпроводящие линии электропередач — это  [c.158]

Весьма актуальными также являются проблемы криогенной техники, связанные с созданием сверхпроводящих материалов и использованием различного криогенного оборудования резервуаров для хранения сжиженных газов и других емкостей, миниатюрных холодильных газовых машин, криогенных насосов, рабочие поверхности которых, охлаждаемые хладагентами (жидкие азот, водород, гелий), позволяют вымораживать практически все газы из откачиваемого объема и получать вакуум выше 10 мм рт. ст. Важны также низкотемпературные исследования материалов, используемых в ракетно-космических системах, элементы которых, подвергающиеся во время службы действию статических и динамических нагрузок, вибраций, изгибных колебаний и т. д., работают в весьма широком диапазоне температур, начиная с очень низких и включая температуры, близкие к температуре плавления материала.  [c.187]


Своеобразная экспансия, стремление расширить диапазоны возможного во всех направлениях — характерная черта развития всех областей науки и техники вовсе времена. Получение сверхвысоких и сверхнизких температур, использование глубочайшего вакуума и сверхвысоких давлений, сверхпрочных, сверхпластичных и сверхпроводящих материалов, исследование взаимодействия частиц сверхвысоких энергий — каждое новое сверх означает еще один шаг вперед на пути научно-технического прогресса.  [c.70]

По своему поведению в достаточно сильных полях сверхпроводящие материалы делятся на две группы сверхпроводники 1-го и 2-го рода (рис. 4), Нач. участок кривых намагничивания (где М — —Я/4л) соответствует полному эффекту Мейснера. Дальнейший ход кривых у сверхпроводников 1-го и 2-го рода существенно различается.  [c.437]

СВЕРХПРОВОДНИКИ ВТОРОГО РОДА — сверхпроводящие материалы, составляющие один из двух классов, на к-рые подразделяются все сверхпроводники в зависимости от поведения в магн. поле.  [c.441]

Расширение возможностей прямого метода ускорения в первую очередь связано с получением высокого уровня маги, поля (увеличение диаметра полюса D нецелесообразно, т. к. вес электромагнита пропорционален D ), что достигается применением сверхпроводящих материалов, В разл. научных центрах мира созданы циклотроны с макс. уровнем ср. поля (40—53) кГс, к-рое реализуется с помощью сверхпроводящей основной обмотки и железных секторов, обеспечивающих азимутальную вариацию магн. поля.  [c.199]

Крупномасштабное применение сверхпроводимости связано с уменьшением массы и габаритов магнитных систем, уменьшением энергетических затрат при получении магнитных полей высокой напряженности. Термоядерный синтез, МГД-генераторы, индуктивные накопители энергии, генераторы и двигатели переменного и постоянного тока, трансформаторы, ЛЭП постоянного и переменного тока, высокоскоростные поезда, обогащение руд — далеко не полный перечень областей возможного использования сверхпроводящих материалов.  [c.524]

К. Известно до 2000 сверхпроводящих материалов.  [c.343]

Весьма заманчивой возможностью для решения проблемы радиационной безопасности при космических полетах является создание так называемой активной защиты, использующей для отклонения заряженных частиц магнитные и электрические поля [30]. Вес такой защиты, как показывают оценки, в ряде случаев может быть сравнимым или меньще веса пассивной защиты. Важно также, что по мере совершенствования конструкционных и сверхпроводящих материалов, криогенной техники и техники сверхвысоких напряжений вес активной защиты будет снижаться [30].  [c.292]

Характеристики сверхпроводя-. щих материалов тесно связаны с технологией и конструкцией изготовляемых проводов и подвержены заметным изменениям при переходных режимах в условиях эксплуатации. Сверхпроводящие материалы широко используются прежде всего для сооружения соленоидов, обеспечивающих создание очень сильных магнитных полей порядка 10 ajm. Рассматривается возможность применения сверхироводниковых магнитов для фокусировки потока частиц высоких энергий, при исследованиях термоядерных. процессов, для магнитных линз электронных микроскопов, для двигательных установок космических кораблей и т. п. Сочетание молекулярной и сверхнроводннковой электроники открывает перспективу создания вычислительных машин с колоссальным объемом информации.  [c.280]

С) плазмы, сверхжаропрочные материалы, мощные магнитные системы на сверхпроводящих материалах и другие физические процессы и явления.  [c.55]

Теоретические и экспериментальные работы по сверхпроводимости, которые в настоящее время ведутся широким фронтом во всем мире, преследуют цель, во-первых, разработки новых сверхпроводящих материалов с более высокой Т р на основе рассмотренного механизма объединения электронов в пары через решетку во-вторых, изыскания новых более эффективных видов взаимодействия электронов, способных привести к их объединению в пары с более высокой энергией связи и более высоким парамётром g. Возможно, что на этом пути удастся в конце концов получить высокотемпературную сверхпроводимость, практическую значимость которой трудно переоценить.  [c.201]

Высокая интенсивность и хорошая коллимация снвхро-тронвого излучения позволяют создавать пром. системы с разрешением 0,1 ыкм при малых временах экспозиции и упрощают проведение операции совмещения маркерных знаков с точностью 0,02 мни и рисунков (с точностью 0,1 ыкм) на больших площадях. Дальнейший прогресс в области источников излучения для Р. л. связан с разработкой компактных синхротронов с электромагнитами из сверхпроводящих материалов.  [c.345]


С. м. нашли широкое применение в науч. приборостроении. Сверхпроводящие соленоиды с индукцией до 15—16 Тл используются для исследований в физике твёрдого тепа п для испытаний сверхпроводящих материалов. Для ЯМР-спектрометров используют высокостабильные С. м. с короткозамкнутой обмоткой и характерны,м временем изменения мага, поля до 10 с, С, м. в физике высоких энергий служат в качестве отклоняющих, фокусирующих II анализирующих магнитов (см. Детектора), вапр. ускоритель с энергией протонов до 0,8 ТэВ в Лаборатории им. Ферми (США) сооружаемый в пос. Протвино под Москвой ускоритель-но-вакопнт. комплекс с энергией протонов до 3—5 ТэВ пузырьковая камера объёмом 33,5 м , в С. м. к-рой запасена энергия 800 МДж (ЦЕРН, Швейцария). Особо крупные С. м. применяют в физике плазмы и в прототипах термоядерных реакторов. Введённая в 1989 в СССР (Ин-т атомной ввергни им. И. В. Курчатова) установка Токамак Т-15 имеет тороидальный С. м. с запасаемой энергией 0,5—1 ГДж (рис.). ЯМР-томо-графы с С. м. используют в медицине.  [c.446]

Осн. недостатком С., препятствующим их более ши-роко.му распространению, является необходимость охлаждения до уровня гелиевых или водородных темп-р при применении традиц, сверхпроводящих материалов. Открытие в 1986—87 оксидных высокотемпературных сверхпроводников с Tg as 100 К открывает перспективы создания С. при азотных темп-рах [10].  [c.541]

Титан немагнитен и, следовательно, может применяться в криоэнергетике для изготовления электрических машин, использующих сверхпроводящие материалы.  [c.508]

Сверхпроводящие материалы часто применяются в агрегатах ядерного синтеза. В ходе эксплуатации они подвергаются довольно сильному облучению. Следовательно, важной характеристикой та ких материалов является их устойчивость по отношению к облучению. Однако в кристаллических сверхпроводниках, и в особенности в сверхпроводящих химических соединениях, при, облучении резко снижаются как характеристики сверхпроводимости, так и механические свойства. Так, критическая температура Тс соединений NbsSn, NbsAl, NbgGe после дозы облучения 5-10 нейтронов на 1 см снижается от 18—20 К до 3—4 К [Й]. Сверхпроводящие же аморфные сплавы, вероятно, более устойчивы к облучению. Об этом можно судить хотя бы на том основании, что их электросопротивление после облучения практически не меняется [54].  [c.220]

Таким образом, можно сказать, что получение аморфных сверхпроводящих материалов, покрытых стабильными4 материалами (медью и т. п.), имеющих превосходные характеристики и  [c.222]

Таким образом, в конце 1980-х годов был создан фундамент нормативной базы экспериментального определения характеристик тре-щиностойкости конструкционных материалов. В то же время имеется ряд нерешенных методических вопросов при экспериментальном определении характеристик трещиностойкости в условиях упругопластического деформирования (испытания тонколистовых материалов, сталей низкой и средней прочности, наличие концентрации напряжений), при реализации смешанных моделей деформирования, а также в условиях продольного и поперечного сдвигов. Кроме того, к числу нерешенных в плане разработки нормативных документов следует отнести вопросы определения характеристик трещи-ностойкости структурно-неоднородных конструкционных материалов (волокнистые композиционные материалы, конструкционная керамика, слоистые металлкомпозиционные материалы, сверхпроводящие материалы и т.д.)  [c.20]

Ниобий и его сплавы имеют важное значение в электронной и химической промышленности, а сплавы ниобия с оловом являются ценным сверхпроводящим материалом. Большую роль играет рений, его температура плавления 3180 °С, плотность в 3 раза болыпе, чем у железа, он немного легче осмия, платины и иридия. Рений обладает высоким электросопротивлением. Жаропрочность рения с вольфргамом и танталом сохраняется до температуры 3000 °С, сохраняются и механические свойства. Вольфрам и молибден при низких температурах очень хрупки, а в сплаве с рением сохраняют при этих температурах пластичность. Рений используют для производства сверхточных навигационных приборов, которыми пользуются в космосе, для получения торсионов — тончайших нитей, диаметр которых составляет несколько десятков микрометров, обладающих очень высокой прочностью. Проволока сечением в 1 мм выдерживает нагрузку в несколько килоньютонов.  [c.225]


Смотреть страницы где упоминается термин СВЕРХПРОВОДЯЩИЕ МАТЕРИАЛЫ : [c.242]    [c.380]    [c.44]    [c.159]    [c.248]    [c.105]    [c.402]    [c.389]    [c.444]    [c.522]    [c.523]    [c.595]    [c.222]    [c.223]    [c.341]    [c.14]    [c.595]    [c.242]    [c.242]    [c.246]    [c.441]    [c.594]   
Смотреть главы в:

Электротехнические материалы и изделия  -> СВЕРХПРОВОДЯЩИЕ МАТЕРИАЛЫ

Новые материалы  -> СВЕРХПРОВОДЯЩИЕ МАТЕРИАЛЫ



ПОИСК



Магнитные и сверхпроводящие материалы

Перспектива использования сверхпроводящих материалов

Сверхпроводимость и сверхпроводящие материалы Ю.П. Солнцев)

Сверхпроводящие материалы и их свойства. Б. Робертс (Перев Матвеевой)

Сверхпроводящие материалы и технология их производства

Энергетическая щель (в сверхпроводящих материалах)



© 2025 Mash-xxl.info Реклама на сайте