Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теория малых упруго-пластических деформаций нелинейная

В расчетной практике широкое распространение имеет так называемая деформационная теория, или теория малых упруго-пластических деформаций, которая на активном участке имеет то же представление, что и нелинейная упругость [16]  [c.132]

Из изложенного следует, что избранная нами форма инварианта позволяет с достаточной точностью описать теорию малых упруго-пластических деформаций и некоторые аспекты теории течения. Применяя этот метод для решения задач с физической нелинейностью при построении скалярной плотности К, придется использовать инварианты более высокого порядка, чем второй.  [c.89]


В настоящей главе рассматриваются основы теории и примеры моделирования механических процессов применительно к задачам статического нагружения объектов при упругих и малых упруго-пластических деформациях. Обсуждаются особенности подобия и моделирования механических систем с учетом геометрической нелинейности.  [c.83]

Расчетные методы математической теории пластичности могут быть охарактеризованы 1) возможностью изучения малых упруго-пластических деформаций 2) учетом сложной (нелинейной) зависимости напряжений от деформации 3) учетом возникающих в материале в процессе деформации явлений физического порядка.  [c.16]

Для решения физически нелинейной контактной задачи в данной реализации используется метод переменных параметров упругости. В точках, где обнаружена пластическая деформация, упругие свойства изотропного материала пересчитываются согласно теории малых упругопластических деформаций [73, 156] по формулам  [c.25]

Относительно самих решений следует указать на один их общий недостаток. Деформации в пластической зоне являются очень большими, порядка 100% для мягкой стали. Таким образом, здесь можно воспользоваться теорией пластичности больших деформаций и вращений, либо же учесть изменения геометрии, выписав граничные условия на деформированной границе. Можно также оперировать уравнениями линейной теории упругости совместно с уравнениями теории малых пластических деформаций, что приводит к игнорированию нелинейно-геометрического характера задачи.  [c.23]

Развитие теории пластичности привело к возможности создания достаточно простого и естественного обобщения теории идеальной пластичности. До сих пор простейшей теорией пластичности упрочняющегося тела считалась теория Генки-Надаи — теория малых упругопластических деформаций [12]. Но существу, соотношения Генки-Надаи являются вариантом нелинейной теории упругости изотропного тела. Деформационные соотношения теории Генки-Надаи (соотношения теории изотропного упрочнения) при сколь угодно малом упрочнении приводят к уравнениям эллиптического типа, т. е. не сохраняют качественных особенностей идеального пластического течения. Такая потеря качественных особенностей идеального пластического течения представляется искусственной, обусловленной характером исходных предположений. Известно, что слои скольжения наблюдаются и при наличии достаточно малого упрочнения пластических тел. Одну из причин несоответствия предположений теории изотропного пластического течения реальному поведению пластических тел следует искать в допущении об изотропном характере упрочнения. В самом деле, согласно теории изотропного упрочнения, поверхность текучести увеличивается подобно самой себе (рис. 2) следовательно, предел текучести при разгрузке должен увеличиться, и кривая а — е для изотропно упрочняющегося тела должна быть представлена кривой О АВС О (рис. 3). Однако эффект Баушингера, являющийся следствием анизотропного упрочнения пластических тел, указывает, что реальная диаграмма сг — е соответствует кривой О АВЕ Г (рис. 3), т.е. с упрочнением при растяжении происходит понижение предела текучести при сжатии.  [c.166]


Если математическая физика прошлого века оперировала преимущественно линейными уравнениями, то в текущем веке, особенно начиная со второй его четверти, положение резко изменилось потребности различных областей техники все чаще заставляют обращаться к нелинейным задачам. Это полностью относится и к теории упругости, поскольку в рамках классической (линейной) теории упругости невозможно правильное истолкование ряда вопросов, связанных с расчетом деформации стержней, пластин и оболочек, а также упругих тел малой жесткости (выполненных из резины или специальных пластмасс). Кроме того, следует отметить, что один из основных вариантов теории пластичности — так называемая теория малых пластических деформаций — по существу идентичен одному из вариантов нелинейной теории упругости.  [c.3]

Иногда высказывается утверждение, что при любых изотермических процессах нагружения без промежуточных разгрузок для модели пластического тела с упрочнением можно рассматривать связи между полными деформациями и напряжениями как связи, аналогичные связям нелинейной теории упругости. Ниже показывается, что в общем случав это утверждение неверно Для частных путей нагружения для малой частицы такая трактовка допустима. Подчеркнем, однако, что для заданного част-  [c.430]

Давая общую характеристику критериев разрушения, отметим, что если в качестве критериальной величины взять локальный параметр у вершины трещины (упругое раскрытие на малом расстоянии от вершины трещины, радиус кривизны или деформацию у вершины трещины, угол раскрытия и т. п.), то все они дадут один и тот же конечный результат. Подобные критерии составляют предмет линейной механики разрушения. Линейная механика разрушения относится к задачам о трещинах, поставленным в рамках линейной теории упругости, и оперирует, как правило, коэффициентами интенсивности напряжений. Нелинейная механика разрушения привлекает в анализ свойства пластичности материала. Это вытекает из необходимости учета пластического течения в окрестности вершины трещины. Критерии нелинейной механики разрушения отличаются большим разнообразием в связи с различием моделей предельного состояния. Критерии, построенные на этой основе, отвечают критериальным величинам, необратимо накапливающимся в ближней и дальней окрестности трещины. В сравнении с критериями линейной механики раз-  [c.53]

Путем линеаризации нелинейного вариационного уравнения принципа возможных перемещений Лагранжа для задач теории малых упруго пластических деформаций и теории пластического теченггя ниже получены линейные соотношения для методов упругих решений, дополнительных деформаций, переменных параметров упругости, метода Ньютона-Канторовича и метода последовательных нагружений с коррекцией погрешноспг.  [c.232]

Линеаризованные физически нелинейные задачи для гладких и ребристых оболочек. Учет приобретенной анизотропии на примере линеарнзапни физически нелинейных задач теории малых упруго-пластических деформаций при использовании метода переменных параметров упругости рассмотрен в [П. 3]. В этом случае связь между компонентами усилий и деформаций для гладких и ребристых оболочек можно представить в форме (I 20) гл. 4 Д.ЧЯ неоднородных анизотропных оболочек. В этих уравнениях коэффициенты упругости являются функциями напряженно-деформированного состояния. Прн решении данной нелинейной задачи методом переменных параметров упругости физические соотношения на каждом шаге линеаризации сохраняют форму (1.20) с постоянными коэффициентами упругости. Часть коэффициентов в эти.х соотношениях обращается в нуль, а вид других зависит от интегральных физических характеристик сечения (например, [П. 6]). Уравнения равновесия и геометрические завнснмостн, естественно, остаются одинаковыми для теории малых упруго-пластических деформаций н линейной теории неоднородных анизотропных оболочек.  [c.219]


Сначала на примере неоднородного стержня показывается техника применения методики осреднения к нелинейным краевым задачам. С помощью этой методики задача о стержне решается точно. Затем подробно описывается решение квазистатической задачи неоднородной и анизотропной теории пластичности. Рассматриваются теория эффективного модуля и теория нулевого приближения. Большое место в главе уделяется построению теории малых упруго-пластических деформаций для анизотропной однородной среды. Для такой среды доказываются теорема единственности решения квазистатической задачи в перемещениях и напряжениях, теоремы о минимуме лагранжиана и максимума кастильяниана, теоремы о простом нагружении. Описывается схема экспериментов, необходимых для определения материальных функций исследуемой теории. Показано, как исходя из теории малых упруго-пластических деформаций А. А. Ильюшина для изотропной среды получить методом осреднения соотношения анизотропной теории пластичности.  [c.219]

Широкое развитие теории пластичности в нашей стране относится к сороковым годам. А. А. Ильюшин (1943) предложил теорию малых упруго-пластических деформаций, получившую распространение в приложениях. Им была доказана (1945, 1947) теорема о простом нагружении, позволившая на важном частном случае использовать связь между моделью нелинейно упругого тела и моделью упруго-пластической среды. Л. М. Качанов (1940), А. А. Марков (1947) и С. М. Фейнберг (1948) получили основные результаты по вариационным принципам для нелинейно упруго и жестко-пластического тел. Л. А. Галин, А. А. Ильюшин, X. А. Рахматулин, В. В. Соколовский и многие другие дали решения ряда интересных и трудных задач, положивших начало-основным научным школам по теории пластичности в СССР.  [c.392]

Метод, оспованный на применении теории малых упруго-пла-стических деформаций (теории деформаций) с учетом эффекта разгрузки, Применение теории деформаций равнозначно расс.мотрению пластинки в пластической стадии как нелинейно-упругого тела. Теория деформаций без учета эф Ьекта разгрузки в случае сжатого стержня сводится к теории двух модулей ,  [c.113]

После цифровых отсчетов тока в цепи батареи ii и тока в оболочке iz полученные значения перемножались. Затем производилось интегрирование по всему времени, в течение которого длился импульс давления таким образом находилась максимальная скорость стенки оболочки (см. [8]). Затем начальная скорость стенки оболочки использовалась как исходная величина для вычислений по программе динамического расчета упругопластических геометрически нелинейных колец UNIVALVE [9]. Программа UNIVALVE основана на теории малых упругопластических деформаций в сочетании с механической моделью разбиения на слои. Как вписано в работе [10], модель состоит из ряда упруго-идеально-пластических элементов с нулевым модулем упрочнения, соединенных вместе так, чтобы имитировать динамическую кривую напряжения—деформации, показанную на рис. 3. Использовалась поверхность текучести кинематического типа, а также учитывался эффект Баушингера в чистом виде.  [c.192]

В работе [67] развивается приближенный подход, который может рассматриваться как некоторое обобщение теории приспособляемости упругоидеальнопластических тел (с пределом текучести, зависящим от температуры в продолжительности ее действия) на геометрически нелинейные задачи. Принимается, что пластические деформации, возникающие в процессе приспособляемости, малы и могут не учитываться в условиях равновесия. Последние отражают лишь изменения геометрии при упругом деформировании. Ис.ходя из этого, на основе соответственно сформулированных статической и кинематической теорем определяются условия приспособляемости. Как и в задаче об учете температурной зависимости модуля упругости (см. п. 4), самоуравновешенные напряжения в те чение цикла не остаются постоянными в условиях приспособляемости именно в этом и состоит основное отличие указанных теорэм от классических.  [c.30]

Во второй части книги мы рассмотрим акустические волны в твердых телах, характеризующихся различными физическими свойствами — упругой анизотропией, пьезоэффектом, наличием носителей электрического заряда, магнитоупругостью, внутренней структурой и т. д. Однако, прежде чем переходить к изучению такого рода сложных систем, естественно ознакомиться с наиболее простым случаем — классическим идеально упругим изотрот ым твердым телом (диэлектриком). Под идеально упругим будем подразумевать твердое тело, в котором отсутствуют пластические деформации. Иными словами, при снятии силовой нагрузки тело приходит в первоначальное состояние (отсутствие механического гистерезиса). Феноменологически такое тело может быть описано в рамках теории упругости — хорошо разработанного раздела механики сплошных сред (см., например, 1]). Ниже приведены основные сведения из теории упругости, необходимые для понимания дальнейшего изложения. Несмотря на то, что в настоящей главе мы ограничимся рассмотрением волн бесконечно малой амплитуды в рамках линейной акустики, Б целях методического единства здесь приведены и некоторые сведения из нелинейной теории упругости изотропных твердых тел.  [c.188]

Появление выраженных границ раздела с разными законами деформирования связано в первую очередь с наличием на одномерных диаграммах (чистый сдвиг, простое растяжение-сжатие) характерных точек типа то — начальных пределов упругости только за этими точками к упругим деформациям начинают присоединяться пластические. Если же допустить, что последние в исчезающе малых дозах присутствуют на всем пути активного деформирования из естественного состояния, то поведение пластического материала в одномерном, а в условиях применимости деформационной теории и при произвольном состоянии становится неотличимым от поведения нелинейно-упругого тола, и какие-либо разграничительные поверхности в деформируемом теле отсутствуют. Такая замена упруго-пластического тела па иелинейно-упру-гое часто используется в приложениях. Выбор аппроксимации одномерной диаграммы достаточно широк, но в конкретных примерах мы будем пользоваться кривой в виде кубической параболы, которая, как показывают эксперименты, достаточно хорошо может описывать поведение таких, например, материалов, как алюминиевые сплавы.  [c.70]



Смотреть страницы где упоминается термин Теория малых упруго-пластических деформаций нелинейная : [c.87]    [c.149]    [c.365]   
Прикладная теория пластичности и ползучести (1975) -- [ c.384 , c.385 ]



ПОИСК



Деформация малая

Деформация нелинейная упругая

Деформация пластическая

Деформация упругая

Деформация упруго-пластическая

Малые упруго-пластические деформации

Нелинейная теория

Нелинейная теория упругости

Нелинейность при малых деформациях

Пластическая деформаци

Теория деформаций

Теория малых

Теория малых деформаций

Теория малых упруго-пластических деформаций

Теория малых упруго-пластических деформаций пластическая

Теория пластических деформаций

Теория упруго-пластической деформаци

Теория упругости

Упругость Теория — см Теория упругости

Упругость нелинейная



© 2025 Mash-xxl.info Реклама на сайте