Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электромагнитные составляющие

Электромагнитная система единиц 7S Электромагнитные составляющие объемные 178  [c.555]

Энергия за вычетом этих слагаемых называется внутренней энергией (U). Она сосредоточена в массе вещества и в электромагнитном излучении, т. е. это сумма энергии излучения, кинетической энергии движения составляющих вещество микрочастиц, потенциальной энергии из взаимодействия и энергии, эквивалентной массе покоя всех этих частиц согласно уравнению Эйнштейна. При термодинамическом анализе ограничиваются каким-либо определенным уровнем энергии и определенными частицами, не затрагивая более глубоко лежащих уровней. Для химических процессов, например, несущественна энергия взаимодействия нуклонов в ядрах атомов химических элементов, поскольку она остается неизменной при химических реакциях. В роли компонентов системы в этом случае могут, как правило, выступать атомы химических элементов. Но при ядерных реакциях компонентами уже должны быть элементарные частицы. Внутренняя энергия таких неизменных в пределах рассматриваемого явления структурных единиц вещества принимается за условный уровень отсчета энергии и входит как константа в термодинамические соотношения.  [c.41]


Заметим, что уравнения движения электрона в постоянном электромагнитном поле интегрируются аналитически. Это — линейные уравнения с постоянными коэффициентами. Здесь ограничимся лишь исследованием траектории. Представим радиус-вектор г, скорость v электрона и вектор Е в виде суммы двух составляющих  [c.553]

Следует также сформулировать граничные условия для уравнений электромагнитного поля, из которых наиболее широко будем использовать равенство тангенциальных составляющих Е и Н на границе раздела двух сред, т. е.  [c.20]

Но все же необходимо иметь в виду, что в некоторых сложных случаях при отражении и преломлении волн в силу указанных причин может появиться составляющая вектора Е в направлении распространения суммарной волны. Наличие такой составляющей у суперпозиции волн ни в коей мере не противоречит сформулированному ранее положению о строгой поперечности свободной электромагнитной волны.  [c.24]

Мы видим, что амплитуда z, t) представляет суперпозицию монохроматических составляющих с волновыми векторами Ak = = А — йо и частотами Лео =- oi — юо. Выражение (1.27а) описывает огибающую группы волн, закон движения которой мы хотим получить. Электромагнитные волны, образующие группу, описываемую выражением (1.27), и движущиеся со скоростью и = oj/k, имеют более высокую частоту (wq >> Aw), чем монохроматические составляющие С г, t).  [c.48]

Следовательно, можно считать, что спектральный прибор, выделив синусоидальные составляющие из исследуемого излучения, как бы провел экспериментальное разложение заданной функции в ряд Фурье. Математическая операция получения спектра функции E t) и физический эксперимент, заключающийся в разложении электромагнитной волны на составляющие, привели к одинаковым результатам и, по-видимому, близки по количеству получаемой информации об исследуемом излучении. Такое же сравнение математического и физического спектров можно провести и в более сложном случае, когда изучаемая функция не является суммой гармонических колебаний, хотя отличная от нуля ширина аппаратной функции усложняет интерпретацию эксперимента и приводит к дополнительным трудностям, которые здесь не рассмотрены.  [c.69]

Предшествующее изложение показывает необходимость детального анализа условий прохождения электромагнитной волны через границу двух сред. Физические явления, имеющие место в этом случае, следует прежде всего охарактеризовать энергетически, вводя понятие коэффициентов отражения и пропускания. Но кроме характеристик, связанных амплитудами векторов Е и Н, нужно также исследовать фазовые соотношения на границе двух сред. Мы увидим, что это позволит получить новую информацию об изучаемых физических явлениях. Формально задача сведется к использованию граничных условий, которые для векторов Е и Н записывают в виде равенства тангенциальных составляющих на границе раздела.  [c.71]


Нетрудно заметить, что эффект светового давления должен наблюдаться при отражении электромагнитных волн от любого вещества или их поглощении в облучаемом образце. Действительно, при всех изменениях светового потока должна возникать дополнительная сила, которую можно интерпретировать как давление света. Если исходить из наличия в веществе заряженных частиц (электронов), то мы вправе предположить, что при взаимодействии электромагнитной волны с веществом, приводящем к отражению или поглощению части светового потока, электрическая компонента электромагнитного поля будет раскачивать электрон с силой qE, сообщая ему скорость v. Другая составляющая электромагнитного поля (И) будет воздействовать на движущийся заряд с силой Лоренца Af q [vH]/ . Усреднение за период колебаний приводит к тому, что эффективное действие на движущийся заряд оказывает только эта составляющая силы Лоренца, которая много меньше (и << с) раскачивающей электрон силы  [c.108]

Электромагнитное излучение всех длин волн обусловливается колебаниями электрических зарядов, входящих в состав вещества, т. е. электронов и ионов. При этом колебания ионов, составляющих вещество, соответствуют излучению низкой частоты (инфракрасному) вследствие значительной массы колеблющихся зарядов. Излучение, возникающее в результате движения электронов, может иметь высокую частоту (видимое и ультрафиолетовое излучение), если электроны эти входят в состав атомов или молекул к, следовательно, удерживаются около своего положения равновесия значительными силами. В металлах, где много свободных электронов, излучение последних соответствует иному типу движения в таком случае нельзя говорить о колебаниях около положения равновесия свободные электроны, приведенные в движение, испытывают нерегулярное торможение, и их излучение приобретает характер импульсов, т. е. характеризуется спектром различных длин волн, среди которых могут быть хорошо представлены и волны низкой частоты.  [c.682]

В дальнейшем преобразование найденных аналогов может потребовать их полного описания, необходимого для работы соответствующих программных средств. Здесь целесообразно выделить, по меньшей мере, три группы данных, а именно данные для поверочных и проектных электромагнитных расчетов, а также данные, в закодированном виде представляющие графические изображения эскизов конструкции двигателей в целом и составляющих их элементов.  [c.84]

Отражение — возвращение электромагнитного излучения объектом без изменения частот составляющих его монохроматических излучений.  [c.151]

При составлении этого выражения были использованы выражения (72а) для составляющих электромагнитной силы. Иначе говоря, скалярное произведение вектора скорости на вектор электромагнитной силы было представлено в виде  [c.202]

Другая группа объединяет установки для нагрева диэлектриков, где используется электрическая составляющая переменного электромагнитного поля.  [c.7]

В проводящей среде ток смещения несоизмеримо мал по сравнению с током проводимости и им можно пренебречь. В связи с этим уравнения (1-6)—(1-8) упрощаются. При исследовании электромагнитных явлений в проводящей среде уравнение (1-7) более удобно, чем уравнение (1-8). В этом случае наибольший интерес представляет магнитная составляющая электромагнитного поля, через которую выражаются токи, напряжения во всех звеньях рассматриваемой системы и потери на гистерезис в ферромагнетиках.  [c.10]

Ш Интегральные методы основаны на введении вторичных источников поля, которые характеризуют реакцию тел, составляющих систему, на воздействие сторонних (первичных) источников. При этом сами тела заменяются вакуумом, что упрощает расчет. Введение вторичных источников не является однозначным, что позволяет создавать различные расчетные модели, наиболее отвечающие конкретным целям [37]. Целью расчета является определение вторичных источников, после чего легко найти любые параметры системы. Вторичные источники определяются решением интегральных уравнений, описывающих их взаимодействие друг с другом п с первичными источниками. Уравнения учитывают взаимодействие всех источников рассматриваемой системы, а не только соседних, поэтому интегральные методы наиболее удобны для расчета квазистационарных систем, т. е. таких устройств, в которых можно пренебречь запаздыванием сигнала. Это означает, что размеры устройства должны быть значительно меньше длины электромагнитной волны В воздухе. Все индукционные устройства подчиняются это.му условию.  [c.121]


Возможность применения спектрального анализа сигналов ВТП определяется тем, что в процессе воздействия монохроматического электромагнитного поля на объект в сигналах ВТП появляются составляющие частот, отличающиеся от частоты первой гармоники генератора. Это может происходить за счет проявления нелинейных свойств материала изделия или за счет изменения во времени каких-либо факторов контроля. В первом случае возникают кратные гармоники основной частоты, которые несут дополнительную информацию о свойствах объекта. Метод, основанный на анализе параметров кратных гармонических составляющих, называется методом высших гармоник. Он получил применение при контроле ферромагнитных материалов. Во втором случае возникает модуляция выходного напряжения ВТП изменяющимися параметрами объекта, возникает спектр частот сигнала. Метод, основанный на обработке спектра модуляционных колебаний, называют модуляционным.  [c.136]

При прохождении преобразователя над дефектным участком резьбы или зуба электромагнитное поле деформируется, появляется составляющая электромагнитного поля направлен-  [c.181]

Известно, что при достаточно сильном нагревании любое вещество испаряется, превращаясь в газ. Если увеличивать температуру, резко усилится процесс термической ионизации, т. е. молекулы газа начнут распадаться на составляющие их атомы, которые затем превращаются в ноны. Ионизация газа, кроме того, может быть вызвана его взаимодействием с электромагнитным излучением (фотоионизацня) или бомбардировкой газа заряженными частииа.мн.  [c.290]

Электромагнитное поле ЭМП распределено в объеме с различными средами (магнитопровод, воздушные зазоры, электропроводящие материалы и диэлектрики и т. п.), которые имеют сложную геометрическую конфигурацию поверхностей раздела. Учитывая это, а также нелинейность свойств магнитной среды и трехмерность объема ЭМП, можно представить, что расчет электромагнитного поля с помощью (4.8) в полном объеме ЭМП практически невозможен даже при использовании наиболее мощных современных ЭВМ. В связи с этим обычно осуществляется декомпозиция электромагнитного поля на отдельные составляющие и достаточно простые участки. Так, например, в активном объеме ЭМП при определенном-удалении от торцов имеется значительная средняя область, в которой трехмерное поле можно расматривать как совокупность идентичных распределений плоскопараллельных полей, плоскость которых перпендикулярна оси вращения. Наоборот, в зоне лобовых частей ЭМП свести трехмерное поле к двухмерному не удается, но и здесь возможны определенные упрощения при учете симметрии относительно оси вращения.  [c.89]

Действующая на тело, равнодействующая, уравновешивающая, активная, пассивная, живая, объёмная, массовая, приведённая, центральная, (не-) потенциальная, (не-) консервативная, вертикальная, горизонтальная, растягивающая, сжимающая, заданная, обобщённая, внешняя, внутренняя, поверхностная, ударная, (не-) мгновенная, нормально (равномерно) распределённая, лишняя, электромагнитная, возмущающая, приложенная, восстанавливающая, диссипативная, реальная, критическая, поперечная, продольная, сосредоточенная, фиктивная, неизвестная, лошадиная, перерезывающая, поворотная, составляющая, движущая, выталкивающая, лоренцева, потерянная, реактивная, постоянная по величине, периодически меняющая направление, зависящая от времени (положения, скорости, ускорения). .. сила. Касательная, тангенциальная, нормальная, центробежная, переносная, центростремительная, вращательная, кориолисова, даламберова, эйлерова. .. сила инерции. Полезная, вредная. .. сила сопротивления. Слагаемые, сходящиеся, параллельные, позиционные, объёмные, центростремительные, массовые, пассивные, задаваемые, кулоновские. .. силы.  [c.78]

Обратимся сначала к вопросу о поперечности электромагнитных волн, распространяющихся вдоль оси Z в безграничной изотропной среде свободных). Из первой строки уравнений Максвелла (1.14) следует, что onst и = onst. Эти соотношения указывают на постоянство составляющих векторов D и В вдоль оси Z во всех точках пространства.  [c.21]

Мы видим, что электромагнитная теория сразу привела к однозначному выяснению проблемы, представляющей чрезвычайные затруднения в старой волновой теории света. Действительно, опытами Френеля и Араго была экспериментально доказана по-перечность световых волн, но истолконание этих опытов в рамках представлений о распространении упругих волн в эфире было крайне трудно и потребовало введения искусственных предположений, чрезвычайно усложнивших теорию. Сейчас это совер-uieHHo не актуально, светоносный эфир неприемлем не только как конкретная среда, но и как абстрактная система отсчета (см. гл. 7), и отсутствие продольной составляющей свободной электромагнитной волны оказывается простым следствием уравнений Максвелла. Интересен вопрос о возможности экспериментального доказательства этого фундаментального свойства электромагнитных волн. На данном этапе имеет смысл указать на возможность эффектной иллюстрации их поперечности в опытах с современными источниками СВЧ (рис. 1.1).  [c.22]

Авторы [2] при помощи аналогии топологического характера положительно отвечают на фундаментальный вопрос о возможности существования в природе магнитных монополей (полюсов магнита, существующих отдельно друг от друга, или, иными словами, магнитных зарядов). Исключительная важность данного вопроса заключается в том, что обнаружение (или доказательство невозможности существования) монополей позволило бы ответить на многие принципиальные вопросы естествознания. В частности, обнаружение магнитных зарядов было бы первым серьезным подтверждением теорий Великого объединения, единым образом описывающих электромагнитное, слабое и сильное взаимодействия [3] Суть аналогии состоит в создании в слоистых жидких кристаллах нематического и холестерического типов определенной топологии распределения векторов, описывающих ориентацию составляющих кристалл молекул. Данная топология аналогична топологии распределения векгоров магнитного поля вокруг гипотетического монополя Дирака. Таким образом, распределение векгоров ориентации молекул в жидких к-ристаллах можно визуально наблюдать в поляризационный микроскоп. Это позволяет по особенностям поведения жидких кристаллов выдвигать предположения о возможном поведении магнитных монополей и принципиальных методах их экспериментального обнаружения.  [c.15]


Авторы [83] рассматривают явление пластической деформации как волновой процесс. Феноменологически он аналогичен распространению электромагнитных волн, когда электрическая составляющая поля порождает магнитную. Магнитная, в свою очередь, - электрическую и т.д. Так же, как существует две составляющие электромагнитного поля, взаимообусловли-вающие друг друга, существует две взаимообусловливающие составляющие движения дислокаций при пластической деформации. Выше (см. раздел 4.2) мы говорили о двух возможных видах движения дислокационных структур с целью диссипации вносимой в материал энергии - трансляционного и ротационного. Трансляционный сдвиг - это перемещение дислокаций параллельно самим себе в каком-либо направлении. Ротационный поворот - это поворот дислокаций как единого целого вокруг какой-либо точки.  [c.140]

Авторы работы [194] рассматривают явление пластической деформации как волновой процесс. Феноменологически он аналогичен распространению электромагнитных волн, когда электрическая составляющая поля порождает магнитную. Магнитная, в свою очередь, порождает электрическую и т.д. Так же, как существуют две составляющие электромагнитного поля, взаимообусловливаюндае друг друга, существует две взаимообусловливающие составляющие движения дислокаций при пластической деформации. Ранее (см. раздел 6.1) мы говорили о двух возможных вцдвх движения дислокационных  [c.346]

Частица движется в электромагнитном поле, которое является суперпозицией статических полей Ео(г), Во (г) и переменного быстроосциллирующего поля Е (г, t), В (г, t). Найти уравнение движения частицы по плавной составляющей траектории [84].  [c.184]

Более общий подход к изучению законов отражения и преломления электромагнитной волны может быть осуществлен на основе уравнений Максвелла (см. 2.1). Однако уравнения Максвелла были выведены для областей пространства, в которых физические свойства среды (характеризующиеся величинами е и р) непрерывны. В оптике же часто встречаются случаи, когда эти свойства резко меняются на одной или нескольких поверхностях, поэтому необходимо вводить граничные условия. Выше мы отмечали (см. 2.1), что при отсутствии поверхностных токов и свободных поверхностных зарядов на границе раздела уравнения Максвелла должны удовлетворять гранич[1ым условиям, т. е. равенству тангенциальных составляющих векторов Е и Н. Отношение нормальных составляющих обратно пропорционально соответствующим значениям е или р, т. е. г Ет = г2Е2п, р Ящ = ргГ/гп- Так как в оптике обычно Р1 = Ц2=Г то нор.мальные составляющие вектора Н равны Я]т =//2)2.  [c.11]

Таким образом, вторичные химические процессы, происходящие в фотопластинке, позволяют получать негатив после времени экспонирования, составляющего малые доли секунды. Зависимость плотности почернения фотопластинки от количества падающего на нее света (аккумулирующая способность фотоматериалов) делает в принципе фотографическую систему весьма светочувствительной, т. е., регулируя время экспозиции, можно зарегистрировать очень малые яркости. По ширине спектральной области фотографические материалы не сравнимы ни с какими другими приемниками излучения фотографически можно зарегистрировать очень широкий диапазон электромагнитных излучений — от коротковолновых гамма-лучей до длинноволновых инфракрасных лучей.  [c.193]

Примерно половина этой энергии излучается и столько же идет на повышение температуры вещества [43]. Сжатие сопровождается нагревом вещества до громадных температур. При этом состояние вещества качественно меняется. С атомов срываются электронные оболочки, происходит разрушение ядер атомов и составляющих ядра частиц. Законы, которыми описывается динамика этого сверхплотного и раскаленного кослшческого сгустка, принципиально отличны от ньютоновских. С ростом температуры растут скорости частиц сгустка, растет и гравитационное взаимодействие между ними. При энергиях сталкивающихся электронов порядка 10 ГэВ (1 Гэв = 10 эВ) величины гравитационного взаимодействия, электромагнитного, сильного и слабого, примерно равны друг другу. Гравитационное взаимодействие становится по- настоящему сильным. Это уже совсем иная, неньютоновская, физика, раскрывающая новые грани исследования гравитационной постоянной. К рассмотрению этих вопросов мы вернемся после изучения физической сущности новых фундаментальных постоянных.  [c.62]

Электромагнитные колебания — взаимосвязанные колебания электрического и магнитного полей, составляющих единое электромагнитное поле. Распространение элекгромагнитных колебаний происходит в виде электромагнитных волн.  [c.149]

При поперечных электромагнитных полях (5 = 5 = Е = = Ey = v = w = д/ду = didz = 0, W = и, В = By, Е = Е , у =/2) в рассматриваемом случае в уравнении (54) сохраняется только одна составляющая плотности тока  [c.226]

В окружном магнитном поле (0, 0, В ), согласно (235), две составляющие пульсационной электромагнитной силы отличны от нуля ( хФО, fyф0), позтому в данном случав две составляющие пульсационной скорости при дискретном движении моля уменьшаются Пк = щ(1 — aSl), у = Оо(1 — 5 ).  [c.253]

Скалярное описание электромагнитного поля нашло широкое применение при использовании скалярной теории дифракции, не учитьшающей, однако, поляризационные свойства света. Лобая скалярная составляющая стационарного электромагнитного поля npej вставляется в виде  [c.39]

Корпускулярная интерпретация опытов Винера. Электромагнитная природа света была впервые экспериментально подтверждена в классических опытах О. Винера (1890), который наблюдал интерференцию от двух монохроматических световых волн, распространяющихся навстречу друг другу. Такие движущиеся в противоположных направлениях взаимно когерентные волны возникают в результате отражения от зеркала световой волны, падающей на него по нормали. При отражении от металлического зеркала фаза колебаний вектора напряженности электрического поля волны изменяется на я, что обеспечивает соблюдение равенства нулю тангенциальной составляющей электрического поля на поверхности металла. Направляя ось Z по нормали к поверхности зеркала, а ось Л"-колли-неарно линии колебаний вектора напряженности S электрического поля волны (рис. 23), можно для падающей и отраженной волн написать  [c.42]

Перейдем теперь к описанию проблем, составляющих основу магнитоупругости. Исследование взаимодействия магнитного поля с упруго-деформируемыми электропроводящими телами составляет предмет магнитоупругости. Укажем лишь некоторые из них магнитострикционная деформация кристаллических тел пьезомагнетизм магнитоупругость тел, обладающих свойством магнитной поляризуемости задачи индукционного нагрева тел задачи разрушения тел под действием импульсных электромагнитных полей и др. Перечисленные проблемы возникают, в частности, при создании импульсных соленоидальных катушек, магнитогидродинамических ускорителей, различных типов магнитокумулятивных генераторов при управлении движением плазмы и во многих других прикладных задачах, где влияние магнитного поля существенно сказывается на деформации твердого тела. Более сложными задачами магнитоупругости являются задачи взаимодействия с электромагнитным полем материалов, обладающих свойством магнитной поляризуемости (ферромагнетики, антиферромагнетики, ферримагнетики). Это объясняется, прежде всего, отсутствием простых фундаментальных з -  [c.239]


Рассмотрим характер излучательных переходов, основываясь на классической работе Эйнштейна, который еще в 1917 г. ввел понятие о спонтанных и индуцированных переходах. Система, состоящая из двух уровней, показана на рис. 29. Если Е > Е , энергетический уровень 2 лежит выше уровня / и частица находится на уровне 2, то она может перейти на уровень /, испустив квант электромагнитного излучения Лv2l = Е — Е . При этом возможно как спонтанное, так и вынужденное излучение. Вероятность спонтанного излучения, т. е. того, что процесс произойдет за промежуток времени (И, составляет Л 21 При облучении происходит взаимодействие кванта излучения с частицами, составляющими систему, что приводит к одному из двух процессов переходу частицы с уровня / на уровень 2 (поглощение) или, если частица была возбуждена, к обратному переходу (испускание). Вероятность, что какой-то из процессов произойдет за время сИ, пропорциональна плотности излучения и (у) и поэтому может быть записана соответственно В12 и (V) (И и 21 и (V) си.  [c.60]

В течение XIX века были сделаны открытия, составляющие основу современной электротехники. Фарадеем был открыт закон электромагнитной индукции, Ленц и Джоуль установили, что прохождение тока по проводнику сопровождается выделением тепла, Максвелл получил основополагающие уравнения электромагнитного поля, носящие его имя, и построил систему современной электродинамики. В 80-х годах У. Томсон открыл и исследовал поверхностный эффект, заключающийся в том, что переменный ток вытесняется к поверхности проводника. В 1886 г. русский ученый И. И. Боргман исследовал нагревание стекла в конденсаторе при быстро следующих друг за другом зарядах и разрядах. Таким образом, уже в XIX веке были заложены теоретические основы техники индукционного нагрева.  [c.4]

Тигельная печь представляет собоГ относительно короткую электромагнитную систему (отношение высоты загрузки к диаметру редко превосходит 1,5), поэтому электродинамические силы направлены строго радиально только в средней по высоте части тигля. Ближе к верхнему и нижнему краям тигля, где магнитное поле искажается и линии его не идут параллельно оси, радиальная составляющая электродинамических сил уменьшается, как показано горизонтальными стрелками на рис. 14-17. Под действием такой системы сил металл в средней части тигля перетекает от периферии к оси, затем по оси тигля выжимается вверх к зеркалу ванны н вниз ко дну тигля. Вверху и внизу он перетекает к стенкам и вдоль стенок возвращается к средней части тигля, совершая так называемую двухконтурную циркуляцию.  [c.245]

При втором способе передачи энергии происходит передача хаотического (теплового) движения микрочастиц, составляющих макроскопические тела. Для этого между 1 е.лами должен существовать так называемый тепловой контакт, осуществ,)1яемый либо непосредственным (онрмкосновеннем тел,. либо переносом энергии беспорядочных электромагнитных колебаний. При этом необходимо, чтобы тела имели различную температуру. Передача энергии в результате обмена хаотическим, ненаправленным движением микрочастиц называется теплообменом, а количеслво передаваемой при этом энергии — количеством теплоты. теплотой и р о ц е с а н.ли т е и л о т о И.  [c.14]

Продольную волну обычно возбуждают с помощью преобразователя с пластигюй, колеблющейся по толщине (см. подразд. 1.3). Поперечную 5 У-волну, как правило, возбуждают путем трансформации продольной волны, падающей из внешней среды и преломляющейся на поверхности твердого тела (см. подразд. 1.2). SH-волну таким способом получить невозможно, поскольку в падающей продольной волне отсутствует составляющая, перпендикулярная плоскости падения. Йменно трудность возбуждения ограничивает применение 5Я-волн. Эти волны возбуждают с помощью электромагнитно-акустических преобразователей, а чаще — с помощью пластины кварца Y-среза, приклеенной к поверхности изделия (см. подразд. 1.3).  [c.11]


Смотреть страницы где упоминается термин Электромагнитные составляющие : [c.395]    [c.23]    [c.23]    [c.96]    [c.30]    [c.396]    [c.7]    [c.9]    [c.124]    [c.446]   
Механика электромагнитных сплошных сред (1991) -- [ c.0 ]



ПОИСК



Электромагнитные

Электромагнитные составляющие объемные

Электромагнитные составляющие поверхностные



© 2025 Mash-xxl.info Реклама на сайте