Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электромагнитная природа света

ЭЛЕКТРОМАГНИТНАЯ ПРИРОДА СВЕТА  [c.21]

Классические опыты П. Н. Лебедева явились фундаментальным доказательством электромагнитной природы света.  [c.352]

Электромагнитная природа света. Одним из наиболее трудных для волновой теории света  [c.263]

После установления электромагнитной природы света ученые предприняли попытки обнаружить факт движения Земли в опытах со световыми волнами.  [c.281]

Фотоэффект. С установлением электромагнитной природы света волновая теория, казалось, победила окончательно. Однако мог ли автор ее экспериментального обоснования Г. Герц предполагать, что им енно ему будет суждено обнаружить явление, которое будет противоречить волновой теории Он заметил, что при освещении одного из шаров разрядника ультрафиолетовым излучением разряд между шарами возникает при значительно меньших напряжениях. Им было высказано предположение, что под действием излучения зазор между шарами становится более электропроводным. Полученное явление было названо фотоэффектом. Подробные исследования фотоэффекта по схеме, показанной на рис. 24, выполнил в 1888—1890 гг. профессор Московского университета А. Г. Столетов. Он показал, что ток в цепи  [c.117]


Электромагнитная природа света  [c.29]

Идеи Фарадея об электромагнитной природе света получили убедительное математическое обоснование в работах Дж. К. Максвелла. В его знаменитой книге Динами-  [c.29]

Результаты опытов Лебедева по прямому измерению давления света следует рассматривать не только как доказательство электромагнитной природы света. Эти опыты подтвердили наличие импульса у электромагнитного поля.  [c.33]

Из уравнений (1) видно, что изображение точечного источника не является точечным. В силу электромагнитной природы света и конечных размеров зрачка свет от точечного источника в общем случае имеет вид дифракционного пятна.  [c.44]

Электромагнитная природа света 1в  [c.19]

Электромагнитная природа света 21  [c.21]

Электромагнитная природа света 25  [c.25]

Электромагнитная природа света. Существование электромагнитных волн было теоретически предсказано Максвеллом (1862—1864) как прямое следствие из уравнений электромагнитного поля. Скорость электромагнитных волн в вакууме оказалась равной величине 1/ у/ёфо (в современных обозначениях), называемой в то время электродинамической постоянной. Ее числовое значение (3,1 -10 м/с) было получено несколько раньше (1856) из электромагнитных измерений В. Е. Вебера (1804—1891) и Р. Г. Кольрауша (1809—1858). Оно почти совпадало со скоростью света в вакууме, равной, по измерениям И. Л. Физо (1819—1896) в 1849 г., с= 3,15-10 м/с. Другое важное совпадение в свойствах электромагнитных волн и света обусловлено поперечностью волн.- Поперечность электромагнитных волн следует из уравнений Максвелла, а поперечность световых волн — из экспериментов по поляризации света (Юнг, 1817). Эти два факта привели Максвелла к заключению, что свет представляет собой электромагнитные волны.  [c.17]

Опыт Винера по доказательству электромагнитной природы света  [c.36]

Экспериментальное доказательство электромагнитной природы света Стоячие волны света получаются в результате сложения волн падающего и отраженного от некоторой поверх-  [c.36]

В опытах Винера важно не только экспериментальное прямое доказательство электромагнитной природы света, но и установление того факта, чтр на фотоэмульсию действует напряженность электрического поля. волны.  [c.36]

ФИЗИЧЕСКАЯ ОПТИКА ЭЛЕКТРОМАГНИТНАЯ ПРИРОДА СВЕТА Материальность света  [c.26]

Электромагнитная природа света 27  [c.27]

В 60-х годах XIX века Максвеллом были установлены общие законы электромагнитного поля, которые привели его к заключению, что свет — это электромагнитные волны (см. т. III, гл. IV). Подтверждением такой точки зрения в то время были открытие Фарадеем в 1846 г. вращения плоскости поляризации света в магнитном поле и совпадение скорости света в вакууме с электродинамической постоянной, установленное на опыте в 1856 г. Вебером и Кольраушем (см. т. III, 51 и -83). После известных опытов Герца (1887—1888 гг., см. т. III, 142) электромагнитная природа света быстро получила признание. Уже в первом десятилетии ХХ века она из гипотезы превратилась в твердо установленный факт. Световые колебания были отождествлены с колебаниями электромагнитного поля. Оптика превратилась в раздел учения об электрических и магнитных явлениях.  [c.28]


Строгое решение оптических задач, связанных с вопросами распространения света, очень сложно и трудна, и такие решения существуют ТОЛЬКО для немногих случаев. Основная причина трудностей заключается в волновой электромагнитной природе света.  [c.3]

Другой проблемой XIX в. была природа светового излучения. Существовали две основные теории, подтвержденные надежными экспериментальными наблюдениями. Такое наблюдаемое свойство как дифракция, свидетельствовало о том, что свет подчиняется закону упругих волн и его почти полностью можно объяснить электромагнитной теорией Максвелла. Однако фотоэлектрический эффект чужд волновой теории света и мог быть объяснен только при условии допущения корпускулярной природы света.  [c.71]

Как Максвелл, так и Лорентц считали, что носителями световой волны в пространстве является эфир. Существование эфира долгое время не вызывало сомнений, а представления о свойствах эфира развивались параллельно с представлениями о природе света. Согласно Максвеллу, эфир является ответственным за все электромагнитные явления. По Лорентцу, эфир представляет собой бесконечную среду, характеризующуюся только одним параметром —  [c.7]

На вопрос о природе света и механизме его распространения давала ответ гипотеза Максвелла. Па основании совпадения экспериментально измеренного значения скорости света в вакууме со значением скорости распространения электромагнитных волн Максвелл высказал предположение, что свет — электромагнитные волны. Эта гипотеза подтверждается многими экспериментальными фактами. Представлениям электромагнитной теории света полностью соответствуют экспериментально открытые законы отражения и  [c.263]

В этой главе рассматриваются главным образом эксперименты и их результаты. Мы разберем способы измерения скорости света и экспериментального подтверждения инвариантности ее величины в любой инерциальной системе отсчета. Мы не будем здесь обсуждать вопросы об электромагнитной природе  [c.311]

В предшествующих главах были подробно обсуждены многообразные свойства света, указывающие на волновую природу его (интерференция, дифракция) и позволяющие установить поперечный характер световых волн (поляризация). Попутно не раз отмечалось, что световые волны представляют собой электромагнитные волны. В дальнейшем мы встретим многочисленные и разнообразные доказательства электромагнитной природы световых волн.  [c.400]

Среди различных действий света на вещество давление света играет весьма видную роль. Оно имело большое значение в развитии электромагнитной теории света, оно представляет значительный интерес с общефилософской точки зрения на природу света и имеет важные космические применения.  [c.660]

Эфир Френеля — Юнга (начало XIX века), в отличие от эфира Ломоносова — Эйлера, был связан с истолкованием только оптических явлений. Несколько позже Фарадей для истолкования электрических и магнитных взаимодействий ввел также понятие гипотетической вещественной среды, состояние которой (упругие натяжения) должно было объяснить наблюдаемые на опыте эф4)екты взаимодействия между зарядами и между токами. Идеи Л аксвелла об электромагнитной природе света позволили объединить светоносный и электромагнитный эфир, сделав его носителем всех электромагнитных явлений. Возникновение электромагнитного поля, равно как и распространение его, представлялось как изменение состояния эфира, могущее распространяться от точки к точке с определенной скоростью.  [c.23]

При рассмотрении различных вопросов оптики мы до сих пор не обращали внимания на взаимодействие световой волны со средой, в которой она распространяется. Формулируя, например, законы отражения и преломления света, мы основывались только на опытных данных. Однако эти законы, давая правильный ответ на вопрос о направлении отраженной и нрело.мленной волн, ничего не говорят об интенсивности и фазе отраженного и преломленного света. Для ответа на данные вопросы необходимо знать, каким образом влияет на световую волну вещество тех сред, через которые проходит волна. Это можно сделать, исходя из электромагнитной природы света и представлений о веществе как о системе электрических зарядов.  [c.3]


Световые волиы в упругом эфире 23 1.3. Электромагнитная природа света 29  [c.15]

Корпускулярная интерпретация опытов Винера. Электромагнитная природа света была впервые экспериментально подтверждена в классических опытах О. Винера (1890), который наблюдал интерференцию от двух монохроматических световых волн, распространяющихся навстречу друг другу. Такие движущиеся в противоположных направлениях взаимно когерентные волны возникают в результате отражения от зеркала световой волны, падающей на него по нормали. При отражении от металлического зеркала фаза колебаний вектора напряженности электрического поля волны изменяется на я, что обеспечивает соблюдение равенства нулю тангенциальной составляющей электрического поля на поверхности металла. Направляя ось Z по нормали к поверхности зеркала, а ось Л"-колли-неарно линии колебаний вектора напряженности S электрического поля волны (рис. 23), можно для падающей и отраженной волн написать  [c.42]

Основываясь на электромагнитной природе света, изучить свойства монохроматических световь х волн с помощью уравнений Максвелла.  [c.11]

Существование электромагнитны волн следует из уравнений. Максвелла. Электромагнитная природа света установлена в результате совпадения свойств электромагнитных волн, описываемых уравнёниями Максвелла, и свойств света.  [c.25]

Опыт Майкельсона-Морли в конце XIX века показал отсутствие эфирного ветра и постоянство скорости света в двигающихся относительно друг друга системах отсчета. Кроме того, классическая теория не могла объяснить электромагнитную природу света, основанную на уравнениях Максвелла. Таким образом, полученные опытные данные свидетельствовали о противоречивости выводов класси-  [c.425]

Электромагнитная природа света и вещества заставляет ожидать, что оптические свойства вещества должны изменяться при его внесении в электрическое и магнитное поле. Действительно, такие изменения были обнаружены на опыте. Сначала Фарадей в 1846 г. открыл магнитооптическое явление — враи ение плоскости поляризации света в магнитном пом. Затем Керр (1824—1907) в 1875 г. открыл электрооптическое явление , названное его именем. В 1877 г. тот же Керр нашел, что намагниченное железное зеркало иначе отражает поляризованный свет, чем ненамагниченное. В дальнейшем были открыты и другие электрооптические и магнитооптические- явления.  [c.551]

Описание процесса т е п л о в о г о излучения,, Все тела, температура которых отлична от абсолютного нуля, непрерывно излучают и поглощают лучистую. энергию. Излучение имеет двуединую корпускуляр-нонволновую природу. В связи с этим лучистый теплообмен между телами рассматривают как с позиций электромагнитной теории света, так и с позиций квантовой теории излучения.  [c.12]

Дуализм свойств света. При исследовании законов фотоэффекта в опытах по наблюдению рассеяния фотонов на электронах обнаруживается квантовая, корпускулярная природа света. Но вместе с тем свет обнаруживает способность к дифрагсции, интерференции, преломлению, отражению, дисперсии, поляризации и все эти явления полностью объясняются на основе представлений о свете как электромагнитной волне.  [c.304]

Современный этап развития оптики, начало которого можно датировать 1960 г., характеризуется новыми, весьма своеобразными чертами. Фундаментальные свойства света — волновые, квантовые, его электромагнитная природа — находят все более разнообразные и глубокие подтверждения и применения, продолжая служить основой для понимания всей совокупности оптических явлений. Однако круг этих явлений неизмеримо расширился. В начале 60-х годов были созданы источники с высокой степенью монохроматичности и направленности излучаемого ими света — так называемые оптические квантовые генераторы или лазеры. Распространение лазерного излучения и его взаимодействие с веществом во многих случаях протекает в существенно иных условиях, чем в случае излучения обычных, нелазерных источников, и конкретные явления приобретают совершенно новые, неизвестные ранее черты. Сказанное относится к отражению, преломлению, дифракции, рассеянию, поглощению и к другим основным оптическим явлениям (см. ГЛ. ХЬ, ХЫ).  [c.25]


Смотреть страницы где упоминается термин Электромагнитная природа света : [c.332]    [c.127]    [c.479]   
Смотреть главы в:

Оптика  -> Электромагнитная природа света



ПОИСК



Природа

Суперпозиция векторов ноляволны. Суперпозиция бегущих плоских монохроматических электромагнитных волн. Биения. Стоячие волны Преобразование энергии в стоячей электромагнитной волне. Экспериментальное доказательство электромагнитной природы света Поляризация электромагнитных воли

Электромагнитные



© 2025 Mash-xxl.info Реклама на сайте