Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свойства электромагнитных волн

В дальнейшем предвидение Максвелла оправдалось как теоретически, так и экспериментально. Оказалось, что световая волна обладает всеми перечисленными свойствами электромагнитной волны. Поскольку в дальнейшем изложение будет основываться на этих свойствах, будет не лишним привести ниже их доказательство.  [c.22]

Фазовая скорость. Выше мы ознакомились с некоторыми свойствами электромагнитной волны. Теперь более подробно рассмотрим распространение световой волны и ознакомимся с понятиями фазовой и групповой скоростей.  [c.27]


Свойства электромагнитных волн. Свойства электромагнитных волн во многом сходны со свойствами механических волн. На границе раздела двух сред электромагнитные волны частично отражаются, частично проходят во вторую среду. От поверхности диэлектрика электромагнитные волны отражаются слабо, от поверхности металла отражаются почти без потерь (рис. 241).  [c.249]

ОСНОВНЫЕ СВОЙСТВА ЭЛЕКТРОМАГНИТНЫХ ВОЛН  [c.15]

Основные свойства электромагнитных волн (поперечность и ортогональность векторов Е и Н) были получены в 1.1 из прямого анализа уравнений Максвелла, причем молчаливо предполагалось, что существование электромагнитной волны бесспорно. Для более строгого доказательства того, что электромагнитное поле распространяется в виде волны, покажем, что из уравнений Максвелла для однородной непроводящей среды следует волновое уравнение.  [c.26]

Теперь необходимо более подробно исследовать эти свойства электромагнитных волн. Этими основными характеристиками служат наличие плоского фронта, монохроматичность и существование определенной поляризации излучения. Разберем их последовательно, уделяя особое внимание вопросу о том, в какой степени такую абстракцию можно реализовать на опыте.  [c.31]

Впрочем, полученные ниже результаты не связаны с механизмом возникновения двух плоских монохроматических электромагнитных волн одинаковой амплитуды, движущихся навстречу друг другу со скоростью и. Фактически нужно воспользоваться лишь двумя общими свойствами электромагнитных волн, а именно а) справедливостью при всех условиях соотношения Я = ЁЕ и б) справедливостью для обеих волн (условно назовем их падающей и отраженной) правила правого винта.  [c.76]

Корпускулярные свойства электромагнитных волн  [c.20]

Несовместимость законов фотоэффекта с классическими представлениями о свойствах электромагнитных волн проявляется не при качественном, а при количественном подходе к его анализу.  [c.21]

Селективный фотоэффект. Рассмотренные явления обусловливают корпускулярные свойства электромагнитных волн. Однако при определенных условиях в фотоэффекте, называемом селективным, проявляется наличие волновых свойств фотонов (см. 4).  [c.24]

Наиболее замечательным свойством всех до сих пор открытых частиц является то, что в одном отношении они ведут себя как частицы в классическом смысле, а в другом отношении представляются связанными с некоторым видом волнового движения. Исторически они сначала рассматривались как обычные материальные частицы волновые свойства, описываемые квантовой теорией, были исследованы значительно позже. Для фотонов развитие теории происходило в обратном порядке сначала была разработана теория электромагнитного поля, а затем выяснилось, что некоторые свойства электромагнитных волн можно объяснить только при постулировании существования дискретных объектов, подобных материальным частицам и называемых фотонами.  [c.150]


Носителем теплового излучения является поток частиц энергии, называемых квантами энергии или фотонами. Поток фотонов имеет наряду с корпускулярной природой свойства электромагнитных волн, поэтому излучение можно характеризовать волновыми понятиями и, в первую очередь, частотой колебаний v или длиной волны /, которые взаимно связаны формулой / —с v, где с - скорость распространения электромагнитных возмущений (скорость света).  [c.188]

В гл. 1 понятие когерентности электромагнитной волны мы дали, исходя из интуитивных соображений, причем были выделены два типа когерентности — пространственная и временная. В данном разделе мы намереваемся более подробно рассмотреть эти типы когерентности. В действительности, как мы увидим в конце данной главы, пространственная и временная когерентности описывают когерентные свойства электромагнитной волны лишь в первом порядке.  [c.447]

В основе лазерной локации, так же как и радиолокации, лежат три основных свойства электромагнитных волн  [c.126]

Свойства электромагнитных волн  [c.17]

С помощью уравнений Максвелла выводятся основные свойства электромагнитных волн.  [c.17]

Электромагнитная природа света. Существование электромагнитных волн было теоретически предсказано Максвеллом (1862—1864) как прямое следствие из уравнений электромагнитного поля. Скорость электромагнитных волн в вакууме оказалась равной величине 1/ у/ёфо (в современных обозначениях), называемой в то время электродинамической постоянной. Ее числовое значение (3,1 -10 м/с) было получено несколько раньше (1856) из электромагнитных измерений В. Е. Вебера (1804—1891) и Р. Г. Кольрауша (1809—1858). Оно почти совпадало со скоростью света в вакууме, равной, по измерениям И. Л. Физо (1819—1896) в 1849 г., с= 3,15-10 м/с. Другое важное совпадение в свойствах электромагнитных волн и света обусловлено поперечностью волн.- Поперечность электромагнитных волн следует из уравнений Максвелла, а поперечность световых волн — из экспериментов по поляризации света (Юнг, 1817). Эти два факта привели Максвелла к заключению, что свет представляет собой электромагнитные волны.  [c.17]

Здесь V — фазовая скорость волны, т. е. скорость, с которой поверхность равных фаз перемещается в направлении волновой нормали N. Прежде чем вводить материальное уравнение, связывающее векторы Е и О в анизотропной среде, рассмотрим те свойства электромагнитных волн, которые следуют непосредственно из уравнений (4.3). Эти свойства отражают взаимное расположение векторов О, Е, В и N  [c.180]

Ферриты для СВЧ относятся к группе магний-марганцевых ферритов с большим содержанием окиси магния. Они применяются в диапазоне от 500 до 20 ООО Мгц, проявляя при этом особые свойства. Электромагнитная волна в процессе прохождения ее через феррит может активно взаимодействовать с вращающимися электронами, определяющими магнитные свойства среды. В результате этого взаимодействия происходит поворот плоскости поляризации волн (эффект Фарадея) и некоторые другие явления. Накладывая внешнее поле, можно управлять этими явлениями.  [c.342]

Решение различных задач о распространении С. может быть осуществлено при помощи уравнения (3) при соответственном задании граничных и начальных условий. В частности из уравнения (3) выводятся вспомогательные принципы оптики, принцип Гюйгенса, принцип Ферма, принцип прямолинейного распространения С. для однородной среды и различные другие положения геометрической оптики (см. Гюйгенса принцип, Ферма принцип). Явления, наблюдаемые при отражении, рассеянии, распространении С. в анизотропных средах, доказывают для всей шкалы светового спектра поперечность световых возмущений (см. Поляризация света). Световые колебания в изотропной среде происходят в плоскости, перпендикулярной к линии распространения. Свойства электромагнитных волн, излучаемых искусственными электрическими системами—радиостанциями (см.), вибраторами Герца (см.),— вполне совпадают с перечисленными свойствами С., т. е. распространяются с той же скоростью, поперечны и описываются ур-ием (3). На этом основании и по косвенным подтверждениям, получаемым из явлений взаимодействия С. и вещества, можно утверждать, что природа любых световых волн электромагнитная. При этом световой вектор, определяющий действия С. на вещество, есть вектор электрический, что доказано опытами со стоячими световыми волнами при фотохимическом действии (Винер) и при возбуждении флуоресценции (Друде и Нернст).  [c.146]


Важное значение наряду с потоком энергии имеют характеристики, описывающие поляризационные свойства электромагнитного поля. Наличие этих характеристик связано с изменением во времени направления и длины векторов электрического и магнитного полей. Для определения поляризационных свойств электромагнитных волн необходимо охарактеризовать масштаб и положение  [c.9]

Сопоставляя известные из опыта свойства света с выведенными математическим путем из теории Максвелла свойствами электромагнитных волн, можно было предположить (что и сделал Максвелл), что свет—это электромагнитные волны, т. е, что в световой волне распространяются электрическое и магнитное поля. Возникшая таким образом электромагнитная теория света не только вложила новое физическое содержание в уже хорошо разработанные разделы волновой оптики, но и позволила объяснить непринужденно ряд явлений, бывших для нее прежде камнем преткновения (см. 7).  [c.234]

Свойства электромагнитных волн. Вектор Пойнтинга  [c.33]

Синфазность колебаний jaeKTopoB Е н Н. Для доказательства синфазности векторов и Я в бегущей волне рассмотрим одномерную задачу, т. е. положим, что плоская волна распространяется вдоль оси у. Тогда согласно вышеизложет1ым свойствам электромагнитной волны векторы Ё и Н будут направлены, как показано на рис. 2.2, соответственно по осям, Z и X, т. е.  [c.24]

Регистрация излучения в оптическом диапазоне базируется на фундаментальных свойствах электромагнитных волн. Отметим лишь наиболее важные способы индикации, в основе которых лежат фотоэлектрические явления (фотоэлементы, фотоумножители, электронно-оптические преобразователи и др.) фотохимические явления (в первую очередь фотоэмульсии) люминес-  [c.11]

Мы видим, что электромагнитная теория сразу привела к однозначному выяснению проблемы, представляющей чрезвычайные затруднения в старой волновой теории света. Действительно, опытами Френеля и Араго была экспериментально доказана по-перечность световых волн, но истолконание этих опытов в рамках представлений о распространении упругих волн в эфире было крайне трудно и потребовало введения искусственных предположений, чрезвычайно усложнивших теорию. Сейчас это совер-uieHHo не актуально, светоносный эфир неприемлем не только как конкретная среда, но и как абстрактная система отсчета (см. гл. 7), и отсутствие продольной составляющей свободной электромагнитной волны оказывается простым следствием уравнений Максвелла. Интересен вопрос о возможности экспериментального доказательства этого фундаментального свойства электромагнитных волн. На данном этапе имеет смысл указать на возможность эффектной иллюстрации их поперечности в опытах с современными источниками СВЧ (рис. 1.1).  [c.22]

Оптические эффекты тесно связаны с характером зависимости Р от Е. Если эта зависимость линейна (см. (1.6)), то фундаментальным свойством электромагнитных волн в таких средах является принцип суперпозиции. Он позволяет любое состояние электромагнитного поля представить в виде совокупности простых решенийсвойства каждого из которых хорошо изучены. Так, в пространственно однородной среде такими решениями являются плоские волны (однородные или неоднородные), а уравнения  [c.18]

Существование электромагнитны волн следует из уравнений. Максвелла. Электромагнитная природа света установлена в результате совпадения свойств электромагнитных волн, описываемых уравнёниями Максвелла, и свойств света.  [c.25]

О Какое свойство электромагнитных волн обеспечивает соблюдение для них принципа суперпозиции как прямого следствия справедливости принципа суперпозиции для-напряженностй электрического поля и индукции магнитного поля .  [c.34]

Электромагнитные вилны различных диапазонов получили разные названия и обнаруживают себя в совершенно несхожих физических явлениях. Но не следует забывать об общих свойствах электромагнитных волн все упоминавшиеся виды излучения имеют единую природу и отличаются друг от друга только своими частотами и характерными длинами волн. Распространение всех видов излучения в вакууме подчиняется одним и тем же закономерностям.  [c.9]


Смотреть страницы где упоминается термин Свойства электромагнитных волн : [c.315]    [c.11]    [c.20]    [c.25]    [c.329]   
Физика. Справочные материалы (1991) -- [ c.249 ]



ПОИСК



Волны электромагнитные

Волны электромагнитные (см. Электромагнитные волны)

Зависимость геометрических свойств распространения электромагнитных волн в изотропной среде от напряженности поля

КОРПУСКУЛЯРНЫЕ СВОЙСТВА ЭЛЕКТРОМАГНИТНЫХ ВОЛН Фотоэффект

Общие свойства резонаторов ддя электромагнитных волн

Основные свойства распространения электромагнитных волн

Свойства электромагнитных волн. Вектор Пойнтинга

Скорость распространения и некоторые основные свойства электромагнитных волн

Электромагнитные

Электромагнитные волны в передающей линии из свойства



© 2025 Mash-xxl.info Реклама на сайте