Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Смещение тепловое

Отсюда видно, что градиент сопряженной температуры в рассматриваемом случае выражает собой предел отношения бесконечно малого изменения температуры в точке Го к перемещению точечного теплового источника в точке г при бесконечно малом значении этого перемещения. Иными словами, Vr в+(г Го) характеризует собой пространственную скорость (условимся так интерпретировать смысл градиента) изменения температуры в точке Го от смещения теплового источника в точке г на единичное расстояние. Аналогичный физический смысл имеет в более общем случае градиент равный согласно (2.39)  [c.41]


Я.4. ФУНКЦИИ ГРИНА ДЛЯ ЗАДАЧ СТАЦИОНАРНОЙ ТЕПЛОПРОВОДНОСТИ СО СМЕЩЕННЫМИ ТЕПЛОВЫМИ ИСТОЧНИКАМИ  [c.223]

Перенос тепла излучением и оптическая термометрия тесно связаны, поскольку в обоих случаях необходимо иметь соотношение между термодинамической температурой и количеством и качеством тепловой энергии, излученной поверхностью. В конце 19 в. на основе только классической термодинамики и электромагнитной теории были получены два важных результата. Первый — закон Стефана (1879 г.), согласно которому плотность энергии внутри полости пропорциональна четвертой степени температуры стенок полости. Второй —закон смещения Вина (1893 г.), который устанавливал, что, когда температура черного тела увеличивается, длина волны максимума излучения Хт уменьшается, так что произведение ХтТ сохраняется постоянным. Доказательство закона Стефана основано на трактовке теплового излучения как рабочей жидкости в тепловой машине, имеющей в качестве поршня подвижное зеркало, и использовании электромагнитной теории Максвелла, чтобы показать, что действующее на поверхность давление изотропного излучения пропорционально плотности энергии. Закон Вина вытекает из рассмотрения эффекта Доплера, возникающего при движении зеркала. В обоих законах появляется постоянный коэффициент пропорциональности, относительно которого классическая термодинамика не могла дать информации.  [c.312]

Строгой теории, учитывающей динамику накопления и отжига радиационных дефектов, в настоящее время пока не существует. По-видимому, существенную роль в картине радиационного повреждения металлов играют (п, р)- и п, а)-реакции, однако еще неясна роль этих реакций по отношению к элементарным и комплексным дефектам, вызванным смещениями атомов. Тем-не менее в ряде случаев в сталях даже из-за небольших примесей элементов, на ядрах которых происходят эти реакции, может заметно повыситься вклад тепловых нейтронов в радиационное охрупчивание стали.  [c.72]

Из (145) мы видим, что восстанавливающая сила больше для отрицательных значений X, чем для положительных. Поэтому неудивительно, что перемещение, соответствующее (155) и выражающее среднее положение колеблющейся частицы, будет соответствовать положительному направлению оси х, в котором восстанавливающая сила слабее. Смещение (155) пропорционально постоянной ангармоничности S и квадрату амплитуды колебания. Мы знаем из полученных ранее результатов, что энергия гармонического осциллятора пропорциональна А . Из статистической физики (т. V) следует, что средняя энергия классического гармонического осциллятора в тепловом равновесии равна kl ), где k— постоянная Больцмана и Т—абсолютная температура. Если это верно, то приближенно мы можем считать, что  [c.239]


Допплеровское уширение линий объясняется разной величиной допплеровского смещения линий, испускаемых разными атомами, из-за различия в скорости их теплового движения.  [c.177]

Для возникновения радиационных дефектов наибольшее значение имеют упругие столкновения быстрых частиц с атомами кристалла. Если энергия, переданная в результате упругого столкновения от движущейся частицы атому мишени, превышает некоторое значение, то атом мишени, выбитый из узла решетки, оставляя вакансию, движется через кристалл. Наименьшее значение энергии Ed, которую необходимо передать одному из атомов кристалла, чтобы он оказался в ближайшей междоузельной позиции, называют пороговой энергией. Если энергия, переданная атому быстрой частицей, меньше Ed, то смещения атома не происходит, а возникают лишь упругие волны, энергия которых переходит в энергию теплового движения атомов.  [c.95]

Прежде всего покажем, что если бы силы, удерживающие атом в состоянии равновесия, зависели от его смещения линейно, то тепловое расширение отсутствовало бы вовсе, т. е.  [c.183]

Таким образом, расстояние между атомами, совершающими гармонические колебания, при нагревании не изменяется, так как их среднее смещение <л >=0, а следовательно, и тепловое расширение должно отсутствовать, что противоречит реальной ситуации. Все твердые тела при нагревании расширяются. Для большинства твердых тел относительное расширение при нагревании на ] К составляет примерно 10 =. В табл. 6.1 приведены значения температурных коэффициентов линейного расширения для некоторых изотропных веществ.  [c.184]

Для тоГо чтобы характеризовать различные виды поляризации, необходимо знать не только природу частиц, обусловливающих поляризацию, но и особенности межатомных и межмолекулярных взаимодействий. Если силы, стремящиеся возвратить в исходное положение смещенные электрическим полем частицы носят квази-упругий характер, то говорят об упругой поляризации. Если же электроны, ионы или диполи при смещении в поле за счет тепловой энергии преодолевают потенциальные барьеры, то поляризацию называют тепловой. Рассмотрим эти процессы более подробно.  [c.277]

В заключение заметим, что найденная нами эквивалентная тепловая поляризуемость а,т каждого иона (8.49) существенно отличается от ионной поляризуемости при упругом смещении а,-. Величина ai была определена (см. 8.4) как коэффициент пропорциональности между дипольным моментом и внешним полем и выражалась отношением квадрата заряда иона к коэффициенту упругости связи. В случае тепловой поляризации дипольный момент, возникающий при перемещении каждого иона, постоянен, и не зависит от напряженности поля (Р=еб). Поэтому поляризуемость каждого иона обратно пропорциональна полю Е  [c.287]

Переход от реальных тепловых колебаний решетки к нормальным колебаниям. Атомы кристаллической решетки совершают тепловые колебания относительно положений равновесия—узлов решетки. В идеальной решетке все атомы физически равноправны. В такой структуре взаимосвязанных атомов смещение любого из атомов распространяется по всему коллективу по кристаллической решетке бежит волна — типичное коллективное движение. Совокупность коллективных движений может быть представлена Б виде суперпозиции плоских монохроматических волн (так называемых нормальных волн) вида  [c.132]

Итак, представим реальные тепловые смещения п-го атома решетки в виде суперпозиции нормальных колебаний  [c.132]

Когда измерения были распространены до температур, значительно более низких, чем в, то были найдены следующие разновидности поведения теплопроводности с изменением температуры а) х увеличивается быстрее Т с уменьшением температуры, пока не достигается максимальное значение при более низких температурах к примерно пропорциональна теплоемкости. Это можно объяснить процессами переброса, а при самых низких температурах рассеянием на границах б) х изменяется как или медленнее. С уменьшением температуры достигается максимум при более низких температурах теплопроводность определяется рассеянием на границах. Тепловое сопротивление выше температуры максимума, по-видимому, обусловлено дефектами в) в поликристаллах тепловое сопротивление, обусловленное границами кристаллитов, увеличено и максимум смещен к более высоким температурам.  [c.249]


Берман, Симон, Клеменс и Фрай [20, 39, 40] исследовали теплопроводность кристалла кварца после облучения его нейтронами, а также влияние последующего отжига. Облучение нейтронами вызывает появление добавочного теплового сопротивления, которое оказывается состоящим из двух частей. Первая увеличивается с температурой она была отнесена за счет рассеяния на дефектах, образованных отдельными сместившимися атомами. Вторая часть изменялась как где п лежит между 1 и 3. Эта часть была объяснена рассеянием на больших областях беспорядка, которые возникают, когда отдельный атом получает значительную энергию при столкновении с нейтроном и производит целую лавину смещений. Образование таких лавин предполагается теорией взаимодействия нейтронной радиации с веществом [168, 169].  [c.252]

Между тепловым эффектом растворения и растворимостью одного вещества в другом существует следующая зависимость, вытекающая из общих термодинамических соотношений (например, из принципа смещения равновесия). В случае положительного теплового эффекта растворения (т. е. при выделении теплоты при растворении) растворимость при повышении температуры уменьшается в случае отрицательного теплового эффекта растворимость, наоборот, с ростом температуры повышается.  [c.499]

Это свойство не означает отсутствия сопротивления сдвигу в среде. Несмотря на текучесть, газы сопротивляются сдвигающим усилиям. Сопротивление проявляется в том, что данной силой можно обусловить только определенную скорость деформации и для ее увеличения нужно увеличить силу. Свойство среды сопротивляться сдвигающим усилиям называют вязкостью или внутренним трением. В газах вязкость обусловлена хаотическим движением молекул. Так, при относительном смещении слоев газа со скоростями ии и + Аи (рис. 2) благодаря тепловому движению молекул происходит их перемещение из слоя в слой и соответствующий перенос количества движения. Это приводит к выравниванию скоростей слоев, обусловленному появлением силы Тц, препятствующей их относительному сдвигу.  [c.9]

Найти среднеквадратичные смещения атомов при тепловых колебаниях в зависимости от температуры и массы атомов.  [c.228]

Закон смещения Вина определяет длину волны, на которую приходится максимальная плотность распределения энергии теплового излучения черного тела по длинам волн.  [c.72]

Величина L = > захв называется диффузионной длиной тепловых нейтронов. Диффузионная длина — это мера смещения тепловых нейтроиов в процессе их диффузии (подобно тому, как дл ииа замедления Ls является мерой смещения нейтронов в процессе замедле ния). Так как D = а  [c.313]

Ранее уже отмечалось, что водород рассматривается в перспективе, как топливо, изначально обеспечивающее высокую-экологическую чистоту при сгорании. Главным его достоинством является отсутствие углерода, продуктами сгорания которого становятся угарный газ (оксид углерода) и углекислый газ (диоксид углерода). Первый из них представляет собой крайне ядовитое вещество, применявшееся даже в качестве боевого. Поэтому для нейтрализации этого газа путем дожигания созданы и применяются на практике различные технологии, которые позволяют в значительной степени устранить Опасность загрязнения атмосферного воздуха этим ядом. В то же время углекислый газ, постоянно присутствующий в атмосфере и потому не являющийся сильным ядом, оказывается неустранимым следствием сгорания углеродосодержащих топлив. Однако перспектива увеличения энергетического насыщения транспорта содержит опасность такого увеличения общей концентрации этого вещества в атмосфере, которое может привести к смещению теплового равновесия с трудно предсказуемыми последствиями. Углекислый газ, в отличие от азота и кислорода, поглощает инфракрасное излучение земной поверхности, превращая, таким образом, атмосферу Земли в ловушку солнечного излучения видимая часть солнечного спектра (примерно 80% всей энергии излучения) свободно проходит через атмосферу, нагревает поверхность земли, которая в свою очередь излучает энергию, но уже в инфракрасной части спектра. Ни один из применяемых на практике нейтрализаторов не избавляет от выбросов углекислого газа. Более того, практически отсутствуют даже перспективные технологии, освобождающие от него продукты сгорания углеводородных топлив. Именно поэтому водородное топливо продолжает оставаться главенствующим вариантом экологически чистой технологии транспорта, несмотря на многие недостатки и присущие ему низкие значения важных качественных показателей. Важно также отметить, что под водородным топливом понимается не обязательно чистый водород. Последний может составлять преобладающую часть топлива, как метан в природном газе. Остальная же часть в зависимости от способов получения может быть представлена различными горючими и негорючими газами, меняя тем самым не только энергетические, но и экологические свойства этого топлива. Так водородное топливо, получаемое путем конверсии природного газа, содержит значительную долю угарного газа, сгорание которого приводит к образованию того же диоксида углерода. Более чистое топливо может быть получено по разработанной авторами технологии с использованием гидрореагирующих металлов  [c.7]

Данная задача относится к задаче 2-го вида. Схема размерной цепи, показанной па рис. 11.3, б, относится к примеру 11.1 и а атом примере не учитывается. Величина и допуск исходного размера определяются при проектироиании. Так, в рассматриваемом примере исходный размер назначается исходя из следующих сообра1ке11ий зазор Ао между заплечиками валика 3 и буртиками подшипников 2 и 4 необходим для свободного вращения валика, но должен огранмчнпать сто осспое смещение, однако при очень малом зазоре тепловые деформации могут вызвать заклинивание валика между подшипниками.  [c.141]

В конструкции концевой цапфы, опертой в бронзовой втулКе (рис. 440, а), торец цапфы не доходит до торца втулки при износе на участке з втулки появляется ступенька, мешающая цапфе самоуста-.навливаться в продольном Направлении. Неправильно также вьшолнять осевые размеры по номиналу производственные ошибки, неточность монтажа, а также тепловые деформации системы могут вызвать смещение торца цапфы б внутрь подшипника с тем же конечным результатом что и в предыдущем случае. В правильной конструкции в цапфа вьшущена нз втулки с запасом, обеспечивающим выйупание торца цапфы из подшипника при всех возможных колебаниях продольнь гх размеров системы.  [c.599]


Подход Рэлея к изучению теплового излучения. Во всех разобранных выше случаях подход к изучению теплового излучения был термодинамическим. Рэлей в отличие от своих предшественников впервые применил методы статистической физики к явлениям теплового излучения. Равновесное электромагнитное излучение, находящееся в замкнутой полости с постоянной температурой стенок, рассматривалось им как система стоячих волн разных частот, распространяющихся во всевозможных направлениях. Частоты образовавшихся стоячих волн должны удовлетворять тем же условиям, что и частоты стоячих упругих волн в стержне. При колебаниях упругого стержня на его закрепленпых концах образуются узлы смещения и на длине стержня L укладывается целое число полуволн  [c.330]

Пороговое значение энергии нейтрона в образовании смещенного атома для железа составляет 360 эв. Однако привести к образованию смещенных атомов могут и нейтроны меньших энергий в результате их радиационного захвата [46, 47]. При п, у)-реакции энергия, получаемая ядром отдачи после испускания у-кванта, может превысить энергию смещения атома ( 25 эв). Учитывая спектр захватных у-квантов для ядер железа, можно получить, что средняя энергия ядра отдачи составляет примерно 390 эв [48]. Таким образом, в результате п, у)-реакции в железе может появиться свыше 15 смещенных атомов. Поскольку наибольшим сечением радиационного захвата обладают тепловые нейтроны, то самый большой вклад в образование элементарных дефектов в результате ( , у)-реакции вносят именно эти нейтроны. Доля тепловых нейтронов в полном числе образованных элементарных дефектов сильно зависит от доли этих нейтронов в спектре и может быть заметной, если поток тепловых нейтронов на порядок превышает поток надтепловых и быстрых нейтронов. Например, в водо-водяном реакторе она составляет 2—3%, а в графитовом—25—30% [47]. Это верхняя оценка эффекта тепловых нейтронов, поскольку имеются экспериментальные данные [48, 50] о том, что дефекты, создаваемые тепловыми нейтронами, отжигаются несколько  [c.70]

Как уже ука.чывало( ь, закон Стефана —Больцмана и закон смещения Вина являются обобщением экспериментов по исследованию зависимости светимости черного тела от длины волны и температуры. В то же время они вполне согласуются с охарактеризованной выше термодинамической теорией равновесного теплового излучения. Для уяснения этого получим законы черного тела из термодинамической формулы Вина (8.6).  [c.410]

Величина Л положительна, что обусловливает стоксово смещение. Случай нарушения правила Стокса следует объяснять добавлением к энергии возбуждающего фотона тепловой энергии люминес-цирующего вещества. Действительно, с повышением температуры антистоксовая область обычно выступает яснее.  [c.754]

Выполняя свою основную функцию по электромеханическому преобразованию энергии, ЭМУ вызывает побочные вторичные явления — тепловые, силовые, магнитные, оказывающие значительное, а в ряде случаев, например в гироскопических ЭМУ [7], и определяющее влияние на показатели объекта. Нагрев элементов ЭМУ определяет его долговечность и работоспособность, а в гироскопии — также точность и готовность прибора. Деформации и цибрации в ЭМУ возникают из-за наличия постоянных и периодически меняющихся сил различной физической природы, в том числе сил температурного расщирения элементов, трения, электромагнитных взаимодействий, инерции, от несбалансированности вращающихся частей, неидеальной формы рабочих поверхностей опор и технологических перекосов при сборке и др. и существенно влияют на долговечность и акустические показатели ЭМУ, а в гироскопии — через смещение центра масс и на точность прибора. Магнитные поля рассеяния ЭМУ создают нежелательные взаимодействия с окружающими его элементами, приводящие к дополнительным потерям энергии, вредным возмущающим моментам, разбалансировке и пр.  [c.118]

ТС является простым, универсальным и удобным в реализации средством, широко известным в практике и хорошо зарекомендовавшим себя при тепловых исследованиях, в частности в злектромеханике. На тех же принципах строится и МС, которая также получила достаточно заметное применение при магнитных расчетах в ЭМУ. На аналогичной основе с использованием теории сопротивления материалов при более грубых, чем в теории упругости, допущениях могут быть построены и ДС [34]. Как и в ТС, в ДС центр массы выделенного тела также условно сосредоточивается в его геометрическом центре, но его взаимосвязи представляются по-иному. Так как при деформационных расчетах выделенного тела относительно других тел системы имеется смещение его центра масс в осевом и радиальном направлениях, электрический аналог тела в ДС (в отличие от ТС) в общем случае дол-  [c.126]

При рассмотрении колебаний атомов кристаллической решетки а также теплоемкости твердых тел, связанной с этими колебания ми, предполагалось, что силы, действующие между атомами, упру гие и атомы совершают гармонические колебания с малыми ам плитудами около их средних положений равновесия. Это позволи ло разделить весь спектр колебаний на независимые моды, рассчи тать в этом приближении тепловую энергию кристалла и получить формулу для теплоемкости, хорошо описывающую ее поведение при низких и высоких температурах. Однако для объяснения ряда явлений, таких, например, как тепловое расширение твердых тел и теплопроводность, сделанных предположений уже недостаточно и необходимо принимать во внимание тот факт, что силы взаимодействия между атомами в решетке не совсем упругие, т. е. они зависят от смещения атомов из положения равновесия не линейно, а содержат ангармонические члены второй и более высоких степеней, влияние которых возрастает с ростом температуры.  [c.183]

Сопротивление, вызываемое примесями, дефектами п пзмеиениями структуры. Мы видели, что электрическое сопротивление возникает вследствие нарушения регулярной периодичности ионной решетки. Выше был рассмотрен вопрос о сопротивлении, обусловленном тепловыми колебаниями. Теперь следует остановиться на влиянии статических нарушений порядка, вызванных, во-первых, атомами примесей, которые можно назвать химическими дефектами решетки, и, во-вторых, физическими дефектами решетки, в частности, смещенными из правильных положений атомами, границами зерен и т. п. Обычно химические и физические дефекты рассматриваются совершенно независимо, хотя влияние тех и других обязательно сказывается на результатах любого опыта.  [c.161]

Взаимодействия, обусловленные аигармоннчиостыо колебаний [9, 13, 14]. В п. 3 предполагается, что потенциальная энергия при смещении и является квадратичной функцией относительных смещений и,,, — Um -i, причем суммирование производится как ло всем точкам решетки т, так и по всем парам 1 для данного ш. Нормальными колебаниями в этом случае являются колебания, соответствующие плоским волнам (3.7). Если потенциальная энергия содержит члены выше второго порядка, то плоские волны не будут уже соответствовать нормальным колебаниям и между ними будет происходить обмен анергией. Мы рассмотрим частный случай, когда в выражении для потенциальной энергии содержатся также и кубические члены. Эти члены ответственны за тепловое расширение тел [8]. Рассмотрение легко распространить и на члены более высоких порядков.  [c.232]


Купер [1491 рассмотрел тепловые свойства одномерной модели. Он нашел, что энергетическая щель уменьшается с увеличением температуры и стремится к нулю прп критической температуре 7 , .. Однако приближения, сделанные в теории, несправедливы, если только 7 кр. не превышает толше-ратуру Дебая Нд для модели. В реальных сверхпроводниках Гкр., конечно, много меньше 0д. Купер коснулся вопроса устойчивости токов, отвечающих смещению, описанному выше, но не смог прпйти к определенному заключению.  [c.776]

Открытие Х-перехода в жидком гелии побудило Эренфеста [12] рассмотреть этот тип перехода в более обш их чертах. Эренфест предложил различать типы переходов по характеру разрывов производных термодинамических потенциалов. Род перехода ои определил в зависимости от того, какая из производных претерпевает разрыв—первая, вторая или третья. Так, переход, сопровождаюш ийся поглощением скрытой теплоты (как, например, плавление), нужно рассматривать как переход первого рода, в то н е время Х-переход является переходом второго рода, так Kaii при этом переходе нет разрыва в тепловой энергии, а происходит лишь скачок теплоемкости. Из смещения Х-точки с давлением следует, что  [c.788]

Итак, первым приближением при рассмотрении колебаний атомов в кристалле является гармоническое Ьриближение. В этом приближении полагается, что средние равновесные расстояния между соседними атомами отвечают минимуму кривой U R), причем они соответствуют статической модели кристалла. Атомы колеблются относительно средних положений своих центров тяжести, причем амплитуды колебаний достаточно малы, что позволяет ограничиться учетом квадратичных смещений атомов. Сразу же отметим, что хотя гармоническая модель согласуется со многими экспериментальными данными, некоторые свойства кристаллов, например тепловое расширение, могут быть объяснены лишь при учете эффекта кубичного члена. Такое приближение называют ангармоническим. Оно будет рассмотрено несколько подробнее в конце данной главы.  [c.209]


Смотреть страницы где упоминается термин Смещение тепловое : [c.15]    [c.149]    [c.22]    [c.256]    [c.120]    [c.600]    [c.244]    [c.305]    [c.229]    [c.659]    [c.46]    [c.243]    [c.233]    [c.338]   
Термодинамика необратимых процессов В задачах и решениях (1998) -- [ c.46 ]



ПОИСК



Метод теплового смещения

Ток смещения



© 2025 Mash-xxl.info Реклама на сайте