Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дипольная тепловая поляризация

ДИПОЛЬНАЯ ТЕПЛОВАЯ ПОЛЯРИЗАЦИЯ  [c.289]

Более строгий расчет дипольной тепловой поляризации был предложен Дебаем. Следуя Дебаю, рассмотрим диэлектрик, содержащий N диполей Ро- Пусть диполь направлен под углом 0 к полю (рис. 8.8). Тогда Ро os 0 — составляющая дипольного момента полярной молекулы в направлении поля. Потенциальная энергия диполя в электрическом поле  [c.289]

Время релаксации дипольной тепловой поляризации экспоненциально зависит от температуры, уменьшаясь при нагревании диэлектрика. Прп нормальных условиях (300 К) для различных диэлектриков, обладающих такой поляризацией, время релаксации обычно составляет 10 —10 с. Это означает, что дисперсионная частота для тепловой поляризации лежит в диапазоне радиочастот.  [c.70]


Время релаксации дипольной тепловой поляризации экспоненциально зависит от температуры, уменьшаясь при нагревании диэлектрика. При комнатной температуре для различных диэлектриков оно  [c.261]

Важным отличием тепловой поляризации от упругой является сильная зависимость поляризуемости от температуры. Из изложенного выше следует, что при тепловом характере поляризации индуцированный внешним полем дипольный момент определяется не только напряженностью электрического поля, но и интенсивностью теплового движения частиц, участвующих в поляризации. Такими частицами являются диполи, ионы и электроны. В соответствии с этим различают дипольную тепловую, ионную тепловую и электронную тепловую поляризации.  [c.283]

В заключение заметим, что найденная нами эквивалентная тепловая поляризуемость а,т каждого иона (8.49) существенно отличается от ионной поляризуемости при упругом смещении а,-. Величина ai была определена (см. 8.4) как коэффициент пропорциональности между дипольным моментом и внешним полем и выражалась отношением квадрата заряда иона к коэффициенту упругости связи. В случае тепловой поляризации дипольный момент, возникающий при перемещении каждого иона, постоянен, и не зависит от напряженности поля (Р=еб). Поэтому поляризуемость каждого иона обратно пропорциональна полю Е  [c.287]

Другими словами, atr является коэффициентом, не зависящим от напряженности поля. Электрический дипольный момент единичного объема, возникающий при ионной тепловой поляризации, зависит от Е только потому, что от Е зависит число избыточна перескакивающих через потенциальный барьер ионов.  [c.287]

Если к диэлектрику внешнее поле не приложено, то в различных анионных вакансиях эти переходы происходят хаотически и поляризация не возникает. Приложение электрического поля приводит к тому, что перескоки становятся в значительной степени согласованными. При этом возникает преимущественная направленность перескоков и, таким образом, появляется результирующий дипольный момент. Время релаксации электронной тепловой поляризации достаточно велико 10 —10 с.  [c.288]

Дипольная поляризация (нрк. ориентационная поляризация, релаксационная поляризация, тепловая поляризация) — электрическая поляризация, обусловленная преимущественной ориентацией электрических моментов диполей в одном направлении в диэлектрике.  [c.104]

Изменения дипольно-релаксационной поляризации при нагреве определяются соотношением межмолекулярного притяжения и теплового движения. Ослабление притяжения облегчает ориентацию диполей, а усиление теплового движения ей мешает. В связи с этим поляризация сначала увеличивается до некоторого максимума, а затем уменьшается.  [c.601]


Перескоки электронов и ионов происходят на расстояние порядка 0,5 нм, т. е. локальные электрические дипольные моменты при тепловой поляризации на много порядков по величине превышают локальную упругую поляризацию. Однако тепловое смещение совершают лишь некоторые, обычно примесные слабосвязанные частицы, концентрация которых относительно невелика. Поэтому интегральный вклад от прыжковой (тепловой) поляриза-  [c.63]

Д.-р. п.) с увеличением температуры возрастает, пока ослабление молекулярных сил (уменьшение вязкости) оказывается сильнее, чем возрастание хаотичного теплового движения. Затем, когда хаотичное движение становится интенсивнее, преобладает над ориентацией диполей, величина дипольно-релаксационной поляризации с ростом температуры начинает падать.  [c.69]

Дипольно-релаксационная поляризация отличается от электронной и ионной тем, что она связана с тепловым движением частиц. Дипольные молекулы, находящиеся в хаотическом тепловом движении, частично ориентируются под действием поля, что и является причиной поляризации.  [c.26]

Дипольно-релаксационная поляризация возможна, если молекулярные силы не мешают диполям ориентироваться вдоль поля. С увеличением температуры молекулярные силы ослабляются, что должно усиливать дипольно-релаксационную поляризацию однако в то же время возрастает энергия теплового движения молекул, что уменьшает ориентирующее влияние поля. В связи с этим величина дипольно-релаксационной поляризации с увеличением температуры сначала возрастает, пока ослабление молекулярных сил сказывается сильнее, чем возрастание хаотического теплового движения. Затем, когда хаотическое движение становится интенсивнее, величина дипольно-релаксационной поляризации с ростом температуры начинает падать согласно выражению  [c.26]

При больших напряженностях поля тепловое движение почти не препятствует ориентации диполей по полю. Таким образом, подавляющее большинство молекул поворачивается в направлении поля и средний дипольный момент становится не зависящим от поля. Наступает насыщение. Весьма приближенное вычисление OdT, основанное на аналогии с тепловой ионной поляризацией, не позволяет решить задачу о насыщении.  [c.289]

Электрическая поляризация вещества, состоящего из полярных молекул, отличается от электрической поляризации вещества, состоящего из неполярных молекул. Молекулы, имеющие постоянные дипольные моменты, поляризуются полем не только вследствие индукции, т. е. появления наведенного дипольного момента, определяемого поляризуемостью, но и вследствие ориентации молекул полем. При отсутствии поля молекулы в результате теплового движения расположены хаотично (рис. 16.2, а) и поэтому векторная сумма всех моментов диполей в среднем близка к нулю. При наложении внешнего электрического поля на каждый диполь действуют силы, стремящиеся ориентировать его параллельно электрическому полю (рис. 16.2,6). В этом случае сумма всех дипольных моментов молекул уже не равна нулю и диэлектрик приобретает электрический момент. Такой тип поляризации называют ориентационной, или дипольной, поляризацией.  [c.7]

У полярных диэлектриков, как уже отмечалось, в области низких температур ориентация диполей обычно невозможна, так как т очень велико. При повышении температуры х уменьшается и появляется дипольная поляризация, что обусловливает значительное увеличение е. Однако при дальнейшем росте температуры начинает влиять усиление хаотических тепловых колебаний молекул и соответственно уменьшается  [c.95]

Поляризацию принято подразделять на различные виды в зависимости от способа смещения вызывающих ее частиц — носителей связанных зарядов. Все частицы диэлектрика, способные смещаться под действием внешнего электрического поля, можно отнести к двум видам упруго, или сильно, связанные и слабо связанные [11]. Процессу движения упруго связанных частиц препятствует упругая сила. Такая частица имеет одно положение равновесия, около которого совершает тепловые колебания. Под действием внешнего электрического поля частица смещается на небольшое расстояние. Упругие силы, или точнее квазиупругие, связывают электронную оболочку и ядро в атомах, атомы в молекулах, ионы в кристаллах, дипольные молекулы в некоторых твердых телах. Фи шческая природа таких сил изучается в квантовой механике.  [c.145]


И потерь от дипольной поляризации, В зависимости от конкретных условий может преобладать та или иная составляющая. Это положение иллюстрирует график зависимости tg б совола от температуры, представленный на рис. 2-14. При невысоких температурах преобладают дипольные потери потери от токов утечки очень малы. При отрицательных температурах вследствие высокой вязкости совола, малой тепловой подвижности его молекул ориентация их электрическим полем затруднена. Молекулы находятся как бы в заторможенном состоянии. При повышении температуры вязкость падает, подвижность молекул возрастает и облегчается ориентация их электрическим полем, что приводит к увеличению интенсивности дипольной поляризации и к росту tg б. Температурный максимум приходится на некоторые оптимальные условия подвижность молекул  [c.54]

В обычных условиях в веществах, встречающихся в природе, атомные ядра не ориентированы. Для получения О, я. разработаны спец, методы, основанные на наличии у ядер магнитных дипольных и электрических квадрупольных моментов, ориентационно жёстко связанных с ядерными спинами. При наложении на ядра магн. поля Н взаимодействие поля с магн. моментом ядра р будет стремиться ориентировать р в направлении Н, т. е. поляризовать систему ядер. Если ядра находятся в неоднородном электрич. поле, то его взаимодействие с квадрупольным электрич. моментом ядра О будет приводить к выстраиванию ядерных спинов. Оба эти взаимодействия используются в статич. методах, когда ядерные спины находятся в тепловом равновесии с веществом образца. Если ср. энергия теплового движения превышает энергию взаимодействия ядерного момента с полем, то ориентирующее действие поля в значит, степени подавляется тепловым движением. В связи с малостью ядерных моментов значит, ориентацию ядерных спинов статич. методами удаётся получить лишь при очень низких темп-рах и в очень высоких полях. Так, при практически предельно достижимых 7 10 2 К и // 10 Тл поляризация и выст-  [c.470]

Суть явления поляризации заключается в том, что под воздействием внешнего электрического поля связанные заряды диэлектрика смещаются в направлении действующих на них сил и тем больше, чем выше напряженность поля. В дипольных диэлектриках воздействие электрического поля вызывает со-ответствую<лую ориентацию дипольных молекул в направлении поля при отсутствии поля диполи расположены беспорядочно вследствие теплового движения. В результате поляризации на поверхности диэлектрика образуются заряды разных знаков.  [c.158]

Дипольная поляризация, обусловленная тепловым движением. Механизм тепловой ориентации диполей был предложен Дебаем для объяснения высокой диэлектрической проницаемости воды и других полярных жидких диэлектриков. При 300 К на низкой частоте для воды е 80, в то время как на высокой частоте еэл = = n = l,77. Такое различие в е на разных частотах объясняется запаздыванием ориентации полярных молекул во внешнем электрическом поле при частотах выше 10 —10 ° Гц. Когда внешнее электрическое поле отсутствует ( = 0), диполи ориентированы хаотично и поляризованность Р = 0. Если >0, то в процессе теплового хаотического движения часть диполей ориентируется по полю, вследствие чего появляется новое равно1весное состояние— поляризованное. Это равновесие является термодинамическим за счет тепловых движений (колебаний, вращений) диполи приобретают благоприятную ориентацию, но те же тепловые колебания препятствуют ориентации всех диполей в электрическом поле. Чем выше напряженность электрического поля, тем большая часть диполей в единице объема ориентирована и тем выше поляризованность. В среднем электрический дипольный момент в расчете на одну молекулу пропорционален напряженности электрического поля (если поля не слишком велики) р = ацлР, где Од.т — поляризуемость дипольной тепловой поляризации F микроскопическое электрическое поле.  [c.69]

Время дипольно-релаксащюпной полярпзацин равно 10 ч- Ог сек. Дипольно релаксационная поляризация с увеличением температуры и уменьшением вязкости вещества растет, достигая онределенного максимума, а затем падает, нарушаясь сильным возрастанием интенсивности теплового движения молекул. Параллельно с этим растет, достигая максимума, и tg б, снижение значений которого после максимума более резкое.  [c.8]

Органические полярные диэлектрики имеют дипольно-релаксационную поляризацию, которая связана с наличием в звеньях цепей полимера полярных радикалов (гидроксильных, карбоксильных, галоидных и др.) при несимметричном их расположении в цепи полимера. Эта поляризация в твердом диэлектрике, так же как и в жидкостях, связана с тепловым движением, но ориентация диполей здесь происходит в меньшей мере, не всей молекулы, а только ее радикалов, так как поворот диполей ограничивается высокой вязкостью полимера, превосходящей вязкость мономеров или олигомеров в десятки тысяч и миллионы раз. Диэлектрическая проницаемость твердых полярных полимеров, так же как и полярных мономеров и олигомеров, зависит от частоты и температуры, но максимум выражен тем меньше, чем больше, жесткость материала, чем выше его вязкость в одном и том же интервале температур и частот. Зависимость поляризации диэлектриков от частоты электрического поля иоказана на рис. 1.1.  [c.13]

В случае слабой связи электронов, ионов или диполей в структуре диэлектриков на процессах поляризации сильно сказывается их тепловое движение и поляризация называется тепловой (или прыжковой). В газах и жидкостях слабо связаны лищь молекулы и тепловая поляризация обусловлена дипольным механизмом. В твердых диэлектриках в тепловой поляризации могут участвовать не только диполи, но также электроны (дырки) или 62  [c.62]


Дипольно-релаксационная поляризация возможна, если молекулярные силы не мешают диполям ориентироваться вдоль поля. С увеличением температуры молекулярные силы ослабляются, что должно усиливать дипольно-релаксационную поляризацию однако в то же время возрастает энергия теплового движения молекул, что уменьшает ориентирующее влияние поля. В связи с этим величина дипольно-рела-  [c.41]

Если в диэлектрике имеются полярные молекулы и связь между ними невелика, то под действием поля они могут относительно легко поворачиваться. Ориентации диполей в поле препятствует тепловое движение. В результате возникает дипольная поляризация, 3ависящая от теплового движения.  [c.289]

В результате ориентирующего действия поля и дезориентирующего действия теплового движения устанавливается такое рас-лределение молекулярных дипольных моментов, которое приводит к возникновению поляризации вдоль электрического ноля  [c.261]

Наиболее часто встречающимся нидом релаксационной поляризации является дипольная поляризация, возникающая в полярных диэлектриках при слабых связях между молекулами. Молекулы полярных диэлектриков обладают собственным электрическим моментом, который не зависит от напряженности внешнего электрического поля. После включения поля наиболее вероятным направлением молекулярных дипольных моментов становится направление вектора напряженности электрического поля. Под действием флуктуаций теплового движения большинство дипольных моментов ориентируется в этом направлении. В равновесном состоянии молекулы-диполи не располагаются строго вдоль поля, так как этому мешает тепловое движение, а имеют лишь преимущественную ориентацию ВДОЛЬ ПОЛЯ.  [c.146]

И соответственно прирост диэлектрической проницаемости за счет релаксационной поляризации Дврел — серел = рел/( о )- Усиление теплового движения препятствует полному завершению поляризации диэлектрика, стре.мпсь нарушить преимущественную ориентацию дипольных моментов по направлению электрического поля. Отрицательное влияние повышения температуры заключается в ослаблении поляризации.  [c.152]

В ходе тепловой ионной поляризации твердых диэлектриков переброс слабосвязанных ионов в электрическом поле происходит с потерями энергии. В некоторых диэлектриках с неплотной упаковкой объема частицами, например стеклах, где имеет место ионно-релаксационная поляризация, также наблюдаются закономерности изменения tg6 от температуры и частоты, характерные для дипольной поляризации. На рис. 5.24 приведены температурные и частотные зависимости для алюмоцннкосиликатного стекла — ситалла на основе оксидов SiOj, А1 0з и ZnO. Существование или отсутствие максимумов tg 6 в температурной и частотной зависимостях (рис. 5.24) зависит от условий термообработки стекла.  [c.164]

Дипольно-релаксационная ориентационная) поляризация определяется поворотом и ориентацией диполей в направлении поля и свя-зана с тепловым движением частиц. Дипольные молекулы, находящиеся в хаотическом тепловом движении, ориентируются в направлении действующего внешнего электрического поля, создавая эффект поляризации диэлектрика. При снятии внешнего электрического поля поляризация нарушается беспорядочным тепловым движением молекул. Диполи приобретают самое разнообразное положение в пространстве, и эффект полярного их расположения исчезает. Время установления и нарушения поляризации определяется временем релаксацит дипольных молекул.  [c.7]

Ионная поляризация (С , Q на рис. 1-1, б) характерна для твердых тел с ионным строением и обусловливается смещением упруго-связанных иоиов. С повышением температуры она усиливается в результате ослабления упругих сил, действующих между ионами, Аз-за увеличения расстояния между ними при тепловом расширении. Время установления ионной поляризации около 10 с.. Ципольно-релаксационная поляризация (С .р, рд.р, Гд.р) для <раткости называется дипольной, отличается от электронной и ион-юй тем, что она связана с тепловым движением частиц. Диполь-1ые молекулы, находящиеся в хаотическом тепловом движении, частично ориентируются под действием поля, что и является причи-10Й поляризации.  [c.19]

Дипольная поляризация возможна, если молекулярные силы не трепятствуют диполям ориентироваться вдоль поля. С увеличением температуры молекулярные силы ослабляются, вязкость вещества юнижается, что должно усиливать дипольную поляризацию, однако то же время возрастает энергия теплового движения молекул, что уменьшает ориентирующее влияние поля. Поэтому с увеличением температуры дипольная поляризация сначала возрастает (пока (х лабление молекулярных сил сказывается сильнее, чем возраста-  [c.19]

Если дипольные моменты изменяются вследствие теплового расширения при нагревании диэлектрика, то возникновение при этом внешнего электрического поля называется пироэлектрическим эффектом. Возникновение же внешнего электрического поля из-за изменения дипольных моментов кристалла за счет механической деформации (изменение расстояния между положительными и отрицательными зарядами за счет деформации) называется пьезоэлектрическим эффектом (существуют прямой и обратный эффекты). Наряду с этим имеют место и такие явления, как выделение тепла при воздействии электрического поля электрокало-рический эффект), выделение тепла при индуцировании дипольных моментов [теплота поляризации).  [c.473]

Иначе протекает диссоциация полярных молекул, помещенных вводу (рис. 1.5). Молекулы воды, притянувщиеся к концам полярной молекулы (диполь-дипольное взаимодействие), вызывают расхождение ее полюсов — поляризуют молекулу растворяющегося вещества (например, H I). Такая поляризация в сочетании с колебательным тепловым движением атомов в рассматриваемой молекуле, а также с непрерывным тепловым движением окружающих ее молекул Н2О приводит в конечном счете к распаду полярной молекулы  [c.20]


Смотреть страницы где упоминается термин Дипольная тепловая поляризация : [c.294]    [c.97]    [c.263]    [c.282]    [c.289]    [c.92]    [c.111]    [c.34]    [c.20]    [c.695]    [c.576]   
Смотреть главы в:

Физика твердого тела  -> Дипольная тепловая поляризация



ПОИСК



Поляризация

Поляризация дипольная



© 2025 Mash-xxl.info Реклама на сайте