Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Химические дефекты

Химические дефекты, влияние на сопротивление 161, 162, 164, 167 Хладоагент 50, 125, 126, 129, 130, 143, 146 Хлористый метил 27, 31, 34 Хлористый этил 27 Холла иоле 198  [c.933]

В первом приближении можно считать, что электросопротивление чистого металла есть сумма двух составляющих. Первая ( идеальное электросопротивление) зависит только от температуры и связана с рассеянием электронов проводимости на тепловых колебаниях атомов в решетке. Вторая составляющая ( остаточное электросопротивление) не зависит от температуры и связана с дефектами решетки. При низких температурах, когда вторая составляющая становится доминирующей, электрическое сопротивление должно быть очень чувствительным к химическим дефектам (примесям) или физическим дефектам (дефектам решетки). Для образца, содержащего мало дефектов решетки, измерение низкотемпературного электросопротивления является удобным методом определения степени чистоты. Каждая из примесей вносит вклад в величину электросопротивления пропорционально своей концентрации.  [c.443]


Структурными дефектами являются кристаллические дефекты в аморфных пленках — кристаллы самого материала пленки или же инородных включений. Химическими дефектами следует считать инородные включения загрязнения, попадающие из среды, в которой образуется пленка (пузырьки газа, анионы электролита, вещество испаряющихся электродов и т.п.), а также локальные нарушения состава пленки, например появление в оксидных пленках низших оксидов основного материала или оксидов примесей. Возможно появление дефектов типа микротрещин, пор и флуктуаций толщины. Все эти дефекты в той  [c.263]

Различные процессы образования химических дефектов могут так изменить определенные свойства кристаллов (например, оптическое поглощение, электрическую про-  [c.209]

Химические дефекты — внедрение посторонних атомов в решетку графита (атомы В, Ог, S, Se, Nj, Рит. п.).  [c.10]

Наличие межфазной поверхности раздела, развитого поверхностного слоя с особыми свойствами [12] и как следствие вклада в теплоемкость самой свободной поверхности, ангармонизма колебаний поверхностных атомов, увеличения равновесной концентрации точечных дефектов за счет так называемых химических дефектов, обусловленных взаимной диффузией атомов компонентов и наличия сил притяжения между свободной поверхностью и точечными дефектами, должно привести к значительному отклонению от правила аддитивности, которое в основном используется для определения теплоемкости механических смесей.  [c.80]

Многие дефекты имеют атомную природу. Это либо структурные, либо химические дефекты они могут включать либо атом, либо атомный узел, либо и то и другое в виде группировки.  [c.52]

Возможны следующие механизмы образования дефектов, находящихся в термодинамическом равновесии с кристаллом продуктов химической коррозии металлов в целом.  [c.35]

Начинается вторая стадия окисления металла сопровождающаяся образованием микропустот между металлом и окалиной. При этом скорость процесса окисления металла снижается вследствие уменьшения эффективного поперечного сечения для диффузии катионов металла из металла в окалину. Однако суш,ествую-щий градиент химического потенциала окислителя в окалине и связанный с ним градиент концентрации дефектов в кристаллической решетке окисла обусловливают дальнейшую диффузию металла наружу. В результате процесса диффузии внутренняя поверхность окалины обогащается металлом и термодинамическое равновесие нарушается. Градиент концентрации дефектов в кристаллической решетке окалины начинает уменьшаться и система окалина—окислитель стремится к равновесию с окислителем.  [c.74]


Стеклоэмали, помимо улучшения внешнего вида, эффективно защищают метал-л от коррозии во многих средах. Можно подобрать такой состав эмали, состоящей в основном из щелочных боросиликатов, что она будет устойчива в сильных кислотах, слабых щелочах или в обеих средах. Высокие защитные свойства эмалей обусловлены их практической непроницаемостью для воды и воздуха даже при довольно длительном контакте и стойкостью при обычных и повышенных температурах. Известно о случаях их применения в катодно защищенных емкостях для горячей воды. Наличие пор в покрытиях допустимо при их использовании совместно с катодной защитой, в противном случае покрьггие должно быть сплошным, причем без единого дефекта. Это означает, что эмалированные емкости для пищевых продуктов и химических производств при эксплуатации не должны иметь трещин или других дефектов. Основными недостатками эмалевых покрытий являются чувствительность к механическим воздействиям и растрескивание при термических ударах. (Повреждения иногда поддаются зачеканиванию золотой или танталовой фольгой.)  [c.243]

С повышением температуры и увеличением времени выдержки концентрация примесей в самом зерне стремится к выравниванию чем больше несоответствие растворенного элемента в решетке растворителя, тем больше Q и тем вероятнее процесс диффузии его к границе зерна либо в область физических дефектов кристаллической решетки. Поэтому примеси, сильно искажающие решетку маточного раствора, будут интенсивно стремиться к границам зерна и обогащать ее, влияя тем самым на механические и физико-химические свойства сплава.  [c.464]

Процесс сварки сопровождается интенсивным термодеформационным воздействием на металл. Высокие температуры нагрева, неравновесные условия кристаллизации шва, высоко- и низкотемпературная пластическая деформация, значительная химическая неоднородность металла шва оказывают большое влияние на образование и перераспределение дефектов кристаллического строения в шве и зоне термического влияния.  [c.473]

При нагреве и охлаждении в металлах происходят следующие основные структурные превращения 1) образование границ зерен 2) выравнивание границ зерен и их рост 3) перераспределение химических элементов 4) коагуляция и сфероидизация фаз 5) изменение плотности и перераспределение дефектов кристаллической решетки.  [c.501]

Макроанализ находит широкое применение в промышленности, так как дает возможность вскрывать дефекты строения металла (трещины, раковины, шлаковые включения), химическую и структурную неоднородность.  [c.302]

Более часто макроанализ проводится не на изломах, а на макрошлифах. При этом исследуются химическая и структурная неоднородность металла, волокнистое строение деформированного металла, дендритное строение литого металла, качество сварного соединения, а также выявляются дефекты, нарушающие сплошность строения металла.  [c.302]

Прежде чем воспользоваться количественными мерами химического состава, необходимо указать вещества, которые содержит интересующая система и характеризовать единицу измерения их количеств (моль). На основании химико-аналитических данных вполне определенно можно судить о качественном и количественном элементном составе, поскольку атомы химических элементов выступают как неделимые структурные составляющие вещества при любых его химических превращениях. Однако именно из-за инвариантности элементного состава к таким превращениям количества химических элементов не всегда пригодны для выражения химического состава системы в основу модели ее внутреннего строения могут быть положены не только атомы химических элементов, но и другие структурные составляющие, такие как молекулы, ионы, электроны, комплексы, дефекты кристаллической решетки и т. п. Все эти единицы структуры будем называть составляющими веществами (кратко — составляющими).  [c.16]

Сопротивление, вызываемое примесями, дефектами п пзмеиениями структуры. Мы видели, что электрическое сопротивление возникает вследствие нарушения регулярной периодичности ионной решетки. Выше был рассмотрен вопрос о сопротивлении, обусловленном тепловыми колебаниями. Теперь следует остановиться на влиянии статических нарушений порядка, вызванных, во-первых, атомами примесей, которые можно назвать химическими дефектами решетки, и, во-вторых, физическими дефектами решетки, в частности, смещенными из правильных положений атомами, границами зерен и т. п. Обычно химические и физические дефекты рассматриваются совершенно независимо, хотя влияние тех и других обязательно сказывается на результатах любого опыта.  [c.161]


При использовании пассивирующих ингибиторов необходимо учитывать две особенности присущего им механизма защиты. Первая из них заключается в том, что защитная пленка ( фильм — по Кис-тяковскому) очень часто не бывает сплошной. Причины нарушения сплошности не вполне ясны. Считается, что они связаны с наличием на поверхности металла различного рода неоднородностей, в первую очередь, неметаллических включений [89 137], а также структурных и структурно-химических дефектов, резко выраженных границ зерен с повышенной сегрегацией примесей и т. д. В местах нарушения сплошности — в просветах или в порах металл оказывается обнаженным и, контактируя со средой, корродирует.В присутствии ингибитора общая коррозия переходит в местную, сосредоточенную на отдельных, относительно небольших участках. Это явление наблюдается либо при недостатке ингибитора, либо в результате пробоя пленки в присутствии активных анионов, чаще всего хлоридов. В последнем случае говорят о достижении потенциала перепассива-ции или потенциала питтингообразования. Условием такой локали-  [c.53]

В первой главе обобщены сведения по фундаментальным электронным свойствам нитридов р-элементов III группы — базисных соединений огромного числа нитридных неметаллических керамик. Результаты современных исследований природы и механизмов воздействия на функциональные характеристики этих фаз структурных и химических дефектов, наиболее типичнь1х для реальных нитридных материалов, суммированы в главе 2. Наряду с кристаллическими фазами, рассмотрены ндвые — нанотубулярные формы нитридов. С их разработкой связаны большие надежды по созданию принципиально нового класса материалов высоких технологий. Главы 3,4 посвящены обсуждению второй важнейшей группы неметаллических тугоплавких соединений — нитридам углерода и кремния в кристаллическом,  [c.3]

Повышенная скорость растворения металла у НВ может быть вызвана либо локальной деформацией, либо активирующим действием продуктов растворения включений. Локальная деформация металла вокруг НВ возникает из-за различия коэффициентов термического расширения металла и НВ. Локальная деформация порождает появление структурно-химических дефектов (дислока-  [c.90]

С одним видом химических дефектов мы уже познакомились при описании смешанных кристаллов (см. 8.3.2). В нормальном смешанном кристалле компонент примеси внедряется в основной кристалл, причем атомы постороннего вещества размещаются по нормальным узлам решетки. Это простейший случай образования смешанного кристалла замещения. Оба его компонента имеют близкие радиусы атомов или ионов, а величина взаимодействз ющих зарядов одинакова. Таковы анионы в системе КС1—КВг, разница в размерах которых составляет лишь около 8%, а валентность равна единице. Замещение возможно и тогда, когда ионы компонентов имеют приблизительно одинаковые размеры, но обладают разной валентностью, например, Са + и Na+ или Са и АР+. В этом случае обмен катионов не может протекать непосредственно, а для сохранения электронейтральности кристалла должны происходить дальнейшие изменения для компенсации различий в зарядах. Тогда говорят о взаимосвязанных замещениях. Катионы или анионы кристалла могут находиться также в стехиомет-рическом избытке или недостатке, причем отсутствующие носители зарядов могут замещаться электронами.  [c.209]

Физико-металлургические процессы, протекающие при сварке (па торце электрода, в дуге, ванне), должны обеспечить металл шва такого химического состава, при котором были бы получены необходимые его свойства отсутствие дефектов (трещин, пор и др.), равнопрочность с основным (свариваемым) металлолт и другие свойства, определяемые условиями его работы. Этого можно достичь легированием металла Н1ва присадочным металлом, покрьпием, флюсом либо применением особых методов защиты зоны сварки (защитных газов, вакуума) при сварке без добавочных материалов.  [c.83]

Жидкотекучесть высокопрочного чугуна такая же, как и у серого чугуна при одном и том же химическом составе и прочих равных условиях (температуре заливки, скорости охлаждения и др.), что позволяет получать отливки с толщиной стенок 3—4 мм сложной kofi-фигурации. Линейная усадка высокопрочного чугуна составляет 1,25—1,7 %. Это затрудняет изготовление отливок без усадочных дефектов.  [c.161]

Ряд сталей, цветных и тугоплавких металлов обладает попиженной свариваемостью, которая проявляется в изменении механических или физико-химических свойств металла в зоне сварного соединения по сравнению с основным металлом и в образовании сварочных дефектов в виде трещин, пор и т. п.  [c.229]

Дахе небольшие дефекты в эмалевых защитных покрытиях часто являются причинами полного выхода из строя дорогостоящего оборудования. Реставрация по к рнти я в условиях химического предприятия прпкттески невозмохна. Поэтому применяют различные способы ре1лонта данных покрытий.  [c.73]

При исследовании макрошлифа можно определить форму и расположение зерен в литом металле (рис. 2, ) направлепие волокна (деформированные кристаллиты) в поковках н пгтамиовках (рис. 2, б) дефекты, нарушающие сплогппость металла (усадочная рыхлость, газовые пузыри, раковины, трещины и т. д.) химическую неоднородность сплава, вызванную кристаллизацией или созданную т ермической, ат акже химико-термической (цементация, азотировапие и др,) обработкой.  [c.11]

Мягкая основа сплава а-твердый раствор сурьмы в олове (рис. 176), а твердые кристаллы — Р-фаза эта фаза представляет собой твердый раствор на основе химического соединения SnSb. Сурьма и олово различаются по плотности, поэтому сплавы этих металлов способны к значительной ликвации. Для предупреждения этого дефекта в баббиты вводят медь. Она образует с сурьмой химическое соединение ugSn. Это соединение имеет более высокую температуру плавления и кристаллизуется первым, образуя разветвленные дендриты, которые препятствуют ликвации кубических кристаллов р (SnSb). Кроме того, кристаллы  [c.356]

Чистые металлы не склонны к КРН, возможно, из-за того, что дефекты движутся в поверхностной зоне вершины трещины слишком быстро для успешной адсорбции. Присутствие межузель-ных примесей (например, атомов углерода вдоль границ зерен железа) замедляет движение дефектов (и, возможно, изменяет химическое сродство поверхностных дефектов), что способствует  [c.141]


Экспертное обследование предполагает получение информации о фактическом состоянии элементов длительно проработавшего оборудования, наличия в нем повреждений, выявления причин и механизмов возникновения повреждений. Оно должно проводиться в соответствии с программой, разработанной на основе анализа технической документации, а также данных функциональной диагностики и должно включать визуальный (внешний и внутр)енний) контроль измерение геометрических параметров и толщины стенок замер твердости и определения механических характеристик, металлографические исследования основного металла и сварных соединений определение химического состава дефектоскопический контроль (вид и объем которого устанавливаются с учетом требований полноты и достаточности выявления дефектов и повреждений) испытания на прочность и герметичность и др.  [c.166]

В методике предлагается оценку ресурса печи, эксплуатирующейся при высоких температурах, вести с учетом механо-химических процессов, концентраторов напряжений от различного рода дефектов, в том числе тр<эдино-подобных (непровары и подрезы), развития структурномеханической неоднородности в ра шородных сварных соединениях с наличием мягких участков обезуглероживания и хрупких участков науглероживания.  [c.172]

Любой способ нанесения покрытия начинается с подготовки поверхности подложки. Недостаточное внимание к этому фактору может привести к снижению максимальной эффективности и работоспособности покрытия. Технология подготовки поверхности зависит от способа нанесения и определяется свойствами материала и габаритом покрываемой детали. Ее цель — создание благоприятных условий для сцепления подложки с наносимым материалом, т. е. получение химически чистой поверхности, лишенной посторонних механических поверхностных загрязнений и дефектов, а также создание для нее необходимых профилографических характеристик.  [c.88]

Действие излучения на материалы. При оценке действия радиации на твердое тело констатируется изменение какого-либо свойства или ряда свойств тела, соответствующее определенной степени воздействия излучения, которую характеризуют дозой облучения. Доза — количество энергии, полученное единицей массы вещества в результате облучения. Взаимодействие излучений с твердым телом представляет собой сложное явление, которое в общем случае сводится к следующему возбуждение электронов, возбуждение атомов и молекул, ионизация атомов и молекул, смещение атомов и молекул с образованием парных дефектов Френкеля. Кроме того, в результате воздействия излучений возможны ядерные и химические превращения, а также протекание фотолити-ческих реакций. Все это приводит к уменьшению плотности, изменению размеров, увеличению твердости, повышению предела текучести, уменьшению электросопротивления, изменению оптических характеристик тела. Знание изменений свойств под действием облучений особенно важно при создании ядерно-энергетических установок, ряда устройств космических аппаратов [52]. Покрытия в космическом пространстве испытывают воздействие радиации, состоящей из электромагнитного излучения и потока частиц. Каждое  [c.181]

Наводороживание стенок аппаратов с образованием расслоений размером до нескольких сот квадратных сантиметров происходит за период от нескольких недель до шести лет, причем процесс наводороживания протекает более интенсивно в периоды, когда климатические условия способствуют увеличению конденсации влаги. При одинаковых химическом составе, структуре и механических свойствах металла аппаратуры водородное расслоение локализуется в местах концентрации растягивающих напряжений и повыщенной агрессивности среды. Отмечается [18] преимущественное образование пузырей в не-сплощностях металла (вытянутые вдоль проката строчечные включения, газовые раковины, микро- и макропустоты) и других дефектах, возникающих при прокатке стали. Зачастую пузыри, вызываемые водородным расслоением металла, образуются не только на внутренней, но и на наружной поверхности аппаратов, изготовленных из стали марки Ст 3. В подавляющем большинстве случаев пузыри наблюдаются в нижней части аппаратов, где скапливается основная часть конденсационной воды [11].  [c.17]

ГОСТ 8732-70 материал по исполнительной документации — сталь 20 по ГОСТ 8732-70. Байпасная линия разрушилась на отдельные фрагменты неправильной формы с линейными размерами от 180 до 1300 мм при пуске компрессора. Ультразвуковая толщинометрия восемнадцати фрагментов байпаса показала, что толщина стенки трубы составляла 8,8-11,1 мм. Твердость металла — 206-215 НВ. Для установления очага разрушения фрагменты были обмерены, промаркированы, и в соответствии с линиями разрыва была разработана схема разрушения. На всех представленных фрагментах изучен характер изломов и определены направления распространения трещин, анализ которых позволил предположить, что очаг разрушения находился в сварном шве приварки байпасной линии к крану. Из этого шва были отобраны темплеты для исследования причин зарождения и развития разрушения. Установлено, что очагом разрушения явился участок сварного шва длиной - 50 мм, от которого началось лавинообразное развитие магистральных трещин с многочисленными разветвлениями и изменениями направлений. При изучении рельефа излома сварного шва были выявлены три зоны 1 — первоначальная трещина длиной до 45 мм и глубиной до 7 мм с очагами разрушения в дефектах сварки (подрез, несплавления) 2 — трещины, развившиеся в процессе эксплуатации байпасной линии 3 — долом с гладким срезом. Микроструктурный анализ показал, что начальная трещина развивалась в корневом шве по линии сплавления. В ходе анализа химического состава металла было установлено, что материал байпасной линии соответствовал стали 75 по ГОСТ 14959-79, на основании чего было сделано предположение, что для монтажа байпаса был использован участок трубы из обсадной или технической колонны марки Л, применяемой при обустройстве скважин. Механические свойства и хими-  [c.53]

Химический состав металла, отобранного согласно ГОСТ 7565-81 и ГОСТ 7122-81, определяют стандартными методами аналитического или спектрального анализа. При исследовании макрошлифов основного металла определяют наличие или отсутствие микро- и макрорасслоений, НВ и других дефектов. Выявляют наличие и размеры дефектов металла сварных соединений и проверяют соответствие качества сварных швов нормативным требованиям [ИЗ].  [c.163]

Фракталами называют самоподобные объекты, инвариантные относительно локальных дилатаций, т.е. объекты, которые при наблюдении при различных увеличениях повторяют один и тот же (самоподобный) рисунок. Фракталы обладают также свойством универсальности. Слово "универсальный" означает "всеобъемлющий", а самоподобный означает подобный сам себе (подобно матрешкам, вложенным друг в друга). Понятия универсальность и самоподобие с развитием синергетики и теории фрактальных структур получили новую жизнь, так как принципы синергетики и фрактальной геометрии объединяют все науки. Универсальность фракталов заключается в том, что они инвариантны к природе объекта - физической, химической, биологической или какой-либо другой. Свойство универсальности фрактальных структуф позволяет использовать фрактальную размерность как единую количественную меру разупорядоченности структуры различной природы. В материаловедении традиционно используется евклидова размерность d, позволяющая описывать точечные дефекты размерностью d=0, отрезки прямых линий - d=l, плоских элементов - d=2, объемных - d=3. Однако, природа изобилует объектами с дробной размерностью, т.е. не отвечающей ни одной из указанных значений. Их структура может быть количественно оценена фрактальной размерностью, которая в силу того, что объект разрежен, всегда больше топологической размерности.  [c.77]


Сл( довательно, энергия ЛМс равна сумме кинетических энергий частиц, возникающих в процессе распада. Это соогношение играет важную роль в ядерной физике, указывая источник энергии при процессах деления ядер. В то же время если М (т f f- m2), то реакция может идти в противоположном направлении, обеспечивая термоядерный синтез. Соотношение (7.32) показывает, какая громадная энергия сосредоточена в атомном ядре. Если исходить из среднего значения дефекта масс, примерно равного 0,006 единицы массы на один нуклон, то окажется, что при объединении этих частиц и ядре выделяется энергия, достигающая около 6 МэВ на один нуклон, что в несколько миллионов раз больше энергии обьпгных химических реакций (1 — 2 эВ на атом водорода).  [c.382]

Необходимо отметить, что при переходе в более высоколежащую зону переходного слоя - в область нестехиометрии - взаимодействие дефектов кристаллической решетки со структурой составляющего данную решетку набора частиц играет роль предвестника новой фазы. Например, в решетке РеО избыточные вакансии в катионной подрешетке образуют ассоциаты дефектов - кластеры из двух вакансий в подрешетке Ре и межузельного атома Ре Когда таких кластеров становится много, то они распределяются упорядоченно [75] - в этом пределе кластеры становятся структурными элементами решетки другого соединения - Рез04, Именно в этой части дефекты решетки следует называть не вакансиями, а дефектами решетки вычитания на базе кристаллической решетки объемной фазы, либо на базе кристаллической решетки стехиометрического соединения частиц обеих граничащих фаз - в зависимости от химических свойств объемных фаз и внешних условий (температуры., давления и др.).  [c.122]


Смотреть страницы где упоминается термин Химические дефекты : [c.164]    [c.2]    [c.462]    [c.209]    [c.209]    [c.361]    [c.370]    [c.10]    [c.145]    [c.71]    [c.82]    [c.127]   
Смотреть главы в:

Физико-химическая кристаллография  -> Химические дефекты



ПОИСК



Дефекты отливок в виде неметаллических возникшие вследствие химического

Дефекты химического состава сплава

Химическая гомогенизация и аннигиляция неравновесных дефектов типа дислокаций

Химически стойкие композиции для ремонта дефектов в стеклоэмалевых покрытиях

Химические дефекты, влияние на сопротивление

Химический состав и дефекты поверхности



© 2025 Mash-xxl.info Реклама на сайте