Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Несовершенства поверхностные

Кристаллические решетки зерна могут иметь различные структурные несовершенства точечные, линейные и поверхностные, которые возникают в результате образования вакансий — мест не занятых атомами дислоцированных атомов, вышедших из узла решетки дислокаций, возникающих при появлении в кристалле незаконченных атомных плоскостей примесных атомов, внедренных в кристаллическую решетку.  [c.7]

Основными несовершенствами кристаллической решетки металлов считают точечные, линейные и поверхностные.  [c.16]


Поверхностные несовершенства являются малыми лишь в одном измерении и значительными в двух других измерениях.  [c.17]

Аргон и гелий не образуют химических соединений с металлами. Точно так же азот не взаимодействует с некоторыми металлами — медью, кобальтом и др. Поэтому процессы окисления, азотирования, наводораживания, а также растворения газов и вредных примесей в сварочной ванне связаны с несовершенством газовой защиты зоны сварки и проникновением в нее атмосферного воздуха. Кроме этого, наличие даже небольших концентраций вредных примесей в инертных газах, окисленных поверхностных слоев на кромках металла и сварочной проволоки, способствует образованию оксидов, нитридов и других соединений, заметно снижающих физико-механические свойства сварных соединений.  [c.385]

К поверхностным несовершенствам кристаллического строения относятся искажения кристаллической решетки у поверхности металла, границы зерен, блоков, структурных составляющих.  [c.473]

Структурные несовершенства (дефекты) кристаллов по геометрическому признаку подразделяют на четыре группы 1) точечные 2) линейные 3) поверхностные (или плоские) 4) объемные.  [c.27]

Особенность начального образования оксида состоит в том, что из-за несовершенства поверхности отдельные зародыши располагаются на металле хаотично. Поскольку интенсивность и характер хемосорбции во многом определены ориентацией кристаллов, наличием кромок, пустот, дефектов на поверхности и т. д., предполагается, что хемосорбция является преобладающей в окислении металла в начальной стадии образования оксида, Число зародышей мало зависит от времени, а возрастает с повышением парциального давления кислорода-в окружающей среде. С повышением температуры число зародышей, приходящихся на единицу поверхности, убывает. Объясняется это увеличением поверхностной диффузии, что в свою очередь расширяет зародыши по размерам. После об-разования размещающихся хаотично на поверхности зародышей оксида окисление в дальнейшем идет путем роста отдельных кристаллов до тех пор, пока поверхность полностью не покрывается тонким оксидным слоем. Иногда такие дискретные зародыши и кристаллы оксидов могут образовываться даже после возникновения тонкой оксидной пленки [62]. Им часто отводят важную роль в общем процессе окисления металла.  [c.46]

Из сказанного следует, что механизм окисления металла во многом зависит от условий диффузии компонентов в оксидной пленке. Твердофазная диффузия веществ в твердом теле (в том числе и в оксидных пленках) определена наличием в ньм несовершенств и дефектов. Несовершенства в твердом теле разделяются на две следующие категории точечные дефекты или дефекты решетки, линейные и поверхностные дефекты. К точечным дефектам относятся вакансии, внедренные атомы и атомы, занимающие не свои узлы. Линейные и поверхностные дефекты включают дислокации, границы зерен,. а также внутренние и наружные поверхности.  [c.48]


В композитах серебра, содержащего более 10% вольфрамовой проволоки, разрывы волокон были локализованы в окрестности поверхности разрушения композита [39]. Авторы [39] пришли также к выводу о том, что усталостная прочность волокнистых композитов относительно нечувствительна к поверхностным дефектам, что находится в разительном контрасте с чувствительностью усталости металлов к несовершенствам поверхности.  [c.398]

После почти десятилетнего периода поисков и исследований современные композитные материалы получили широкое распространение во многих отраслях современной техники — от космической до производства изделий массового потребления. Высокие удельные характеристики жесткости и прочности и особенности технологии переработки, позволяющие создавать материалы с заданной ориентацией свойств, выдвинули композиты на первый план среди современных конструкционных материалов. Естественно, в связи с развитием и внедрением новых конструкционных материалов возникла необходимость научиться оценивать их прочностные свойства при различных видах нагружения. Не менее важно знать, как технологические (поверхностные дефекты, нарушения адгезионной связи между слоями) и конструкционные (болтовые, заклепочные, клеевые соединения, закладные детали из других материалов) несовершенства изменяют механизм разрушения композитов. В то же время многочисленные попытки анализа и интерпретации имеющихся экспериментальных данных пока еще не привели к исчерпывающему пониманию явления разрушения в композитах.  [c.34]

По адсорбционной теории Улига [351 КР объясняется ослаб лением межатомных связей в напряженном металле при адсорбции специфических компонентов, главным образом анионов раствора. Активные анионы адсорбируются преимущественно на подвижных дислокациях или других несовершенствах структуры, что снижает поверхностную энергию. Это облегчает разрыв межатомных связей в металле, находящемся под растягивающими напряжениями. На основании этой теории объясняется специфическое влияние различных сред, вызывающих КР, а также действие катодной защиты.  [c.67]

Значительное влияние на качество прессуемых изделий оказывает несовершенство конструкции и техническое состояние технологического оборудования (прессы, пресс-формы и т. п.), а также контрольно-измерительных приборов (манометры, термометры, реле времени и д. т.). Несовершенство конструкции пресс-форм проявляется в процессе проектирования, изготовления и эксплуатации. При проектировании необходимо предусмотреть возможность равномерного обогрева и охлаждения пресс-формы, так как неравномерность обогрева или охлаждения приводит к образованию в изделии поверхностных вздутий, расслоений, трещин, короблений, избыточной пористости материала. Это особенно важно учитывать при изготовлении крупногабаритных деталей, изделий сложной конфигурации и значительной толщины. Обогрев пресс-формы осуществляется при помощи пара, электрических нагревателей омического сопротивления и индукционных нагревателей. Охлаждают пресс-форму, как правило, водой или обдувом холодным воздухом.  [c.10]

Поверхностные дефекты бывают двух типов наружные и внутренние. Наружные дефекты — это несовершенства, обусловленные тем, что поверхность твердого тела граничит с другой фазой. Твердые тела обладают поверхностной энергией, для металлов она  [c.11]

Пластическая деформация поверхностного слоя сопровождается увеличением числа дефектов и искажением кристаллической решетки, изменением субструктуры и микроструктуры металла поверхностного слоя. В металле поверхностного слоя резко возрастает количество дислокаций, вакансий и других несовершенств кристаллической решетки, повышая его напряженность. Взаимодействие полей напряжений дислокаций между собой и с другими дефектами решетки затрудняет движение дислокаций, сопротивление пластической деформации возрастает, металл упрочняется (наклеп, деформационное или механическое упрочнение). Число дефектов в кристаллической решетке поверхностного слоя зависит от степени пластической деформации. Степень деформации, а следовательно, и число дефектов в решетке по глубине поверхностного слоя переменные, они уменьшаются с его глубиной.  [c.50]


Следует полагать, что величина и знак макронапряжений определяются прежде всего дислокационной структурой и характером распределения дислокаций и других несовершенств решетки по глубине деформированного поверхностного слоя.  [c.57]

Пластическая деформация увеличивает количество несовершенств в металле поверхностного слоя. Макронеоднородность деформации в металле создает макронеоднородность в распределении дефектов в кристаллической решетке. Следует полагать, что и возникновение макронапряжений в процессе механической обработки связано с дефектами атомной решетки и прежде всего с дислокациями.  [c.128]

Важными характеристиками физического состояния поверхностных слоев являются микронапряжения, дисперсность и мозаичность структуры, наличие структурных несовершенств (дислокаций, вакансий), характер распределения примесей и легирующих элементов сплава. При оценке этих характеристик наиболее богатую информацию дает рентгеновский метод, к  [c.17]

Падение плотности дислокаций в приповерхностном слое обусловлено эффектом пластифицирования (эффект Ребиндера). Продукты деструкции глицерина, действуя как ПАВ, адсорбируясь, понижают свободную поверхностную энергию, способствуя выходу дислокаций в зоне контакта на поверхность. Таким образом, при трении в условиях ИП не происходит накопления структурных несовершенств типа дислокаций, приводящих со временем к усталостному разрушению поверхностных слоев.  [c.25]

Рентгенографические исследования никеля показали, что при низких температурах испытаний (до 500° С) происходят значительное увеличение плотности несовершенств, развитие сдвиговых процессов в топком поверхностном слое образца и дробление поверхностных участков зерен на фрагменты, разориентированные на 1—2 . В отдельных зернах обнаружены следы скольжения и большое количество эрозионных питтингов, распределенных достаточно равномерно (рис. 5, а).  [c.87]

Кристаллические решетки могут иметь различные структурные несовершенства, существенно изменяющие свойства материала. Реальный единичный кристалл всегда имеет свободную (наружную) поверхность, на которой уже вследствие поверхностного натяжения решетка искажена. Это искажение может распространяться и на прилегающую к поверхности зону.  [c.9]

Дробеструйная обработка применяется для восстановления жесткости пружин, торсионов и рессорных листов. Сущность ее заключается в том, что поток дроби (стальной, чугунной, стеклянной) диаметром 0,6... 1,2 мм направляется на обрабатываемую деталь со скоростью до 100 м/с, в результате чего поверхностный слой наклепывается. Вследствие пластической деформации в поверхностном слое детали возникают не только параллельные, но и ориентированные в разных плоскостях и. направлениях несовершенства кристаллического строения - дислокации. Повышение плотности дислокаций служит препятствием к их перемещению, от этого возрастает реальная прочность материала. Кроме того, образуется большое количество линий сдвига, дробятся блоки мозаичной структуры, что упрочняет поверхностный слой металла на глубину 0,2...0,6 мм. Шероховатость поверхности при этом достигает значений Rz 40...20 мкм. Предварительная химико-термическая обработка и закалка ТВЧ повышают глубину наклепа в 2,0...2,5 раза, что обеспечивает объемное воздействие механической обработки на материал детали.  [c.544]

Запас остаточной долговечности деталей, необходимый для их повторного применения, определяют на стадии выявления их технического состояния. По причине отсутствия или несовершенства средств для измерения этого параметра на восстановление направляются и те детали, которые не имеют достаточного запаса долговечности, что приводит к увеличению количества изломов деталей в эксплуатации. Технический уровень контрольно-сортировочного оборудования недостаточен. Это относится главным образом к оборудованию для определения течей в стенках и стыках и усталостных трещин в поверхностном слое металла.  [c.661]

Роль поверхностных несовершенств в снижении прочности хрупких нитевидных кристаллов можно проиллюстрировать поведением усов сапфира.  [c.357]

В настоящее время установлено, что реальные кристаллы металлов, в отличие от идеальных, обладают рядом структурных несовершенств или дефектов, т. е. отклонений от правильного геометрического строения. Оказалось, что многие очень важные механические и физические свойства и процессы, происходящие в структуре металлов, тесно связаны с несовершенствами (дефектами) строения их кристаллов, которые обычно разделяют на три группы — точечные, линейные и поверхностные.  [c.20]

Поверхностные дефекты, или несовершенства, размер которых мал только в одном направлении. К поверхностным дефектам относятся границы между блоками (см. стр. 68) и между зернами или двойниковые границы (см. стр. 54), поверхности раздела между твердыми фазами, дефекты упаковки и свободные поверхности. В этих случаях несовершенная область является поверхностью, простирающейся внутрь кристалла.  [c.22]

Процесс состоит из зарождения центров кристаллизации (зародышей) аустенита и постепенного роста кристаллов аустенита вокруг этих центров. Центры кристаллизации (зародыши) аустенита прежде всего образуются на поверхности раздела феррита и пластинок или зернышек цементита. Поэтому первые участки аустенита (темные точки на фиг. 109, а) появляются на границах зернышек цементита в феррите, в дальнейшем участки аустенита увеличиваются (фиг. 109, б и в). Это объясняется тем, что в пограничных областях между частицами цементита и ферритной основы сосредоточивается большое количество дислокаций, вакансий, промежуточных атомов, атомов примесей и других несовершенств строения решетки, а также имеется избыток свободной поверхностной энергии. Все это наряду с близостью цементита создает здесь благоприятные условия для диффузии углерода и образования аустенита. Образующийся при этом аустенит имеет около 0,8% углерода.  [c.180]


Природа взаимодействия между сапфиром и никелем как в окислительной, так и в восстановительной атмосферах была недавно детально изучена 120, 21]. В инертной атмосфере причиной снижения прочности служит образование небольших поверхностных несовершенств диаметром порядка 1 мкм. Размер  [c.188]

При использовании этих устройств осуществляется способ непрерывно-последовательной ТМО поверхностей деталей. Этот способ имеет, однако, ряд недо -статков. Он пригоден только для деталей с определенной минимальной длиной упрочняемой поверхности, что обусловлено, как правило, последовательным расположением элементов устройства. Кроме того, конфигурация упрочняемого изде-лия должна обеспечивать свободный вход и выход через элементы устройства. Другой их недостаток связан с невозможностью обеспечения изотермических условий обработки. Поскольку индуктор должен быть смещен с участка поверхности, который в следующий момент подвергается деформации, трудно регулировать температуру этой зоны. Недостатки, связанные с конструктивным несовершенством устройств, описанных выше, отсутствуют в устройствах для единовременной поверхностной ТМО. Принципиальная схема такого устройства приведена на рис. 12 (А. с. № 310941),. В устройстве используется так называемая секторная головка, в которой скомпонованы индуктор 2, накатывающий орган 3 и спрейер 4, расположенные в одной плоскости, перпендикулярной оси упрочняемого изделия.  [c.403]

Выступающие болты, а также направляющие и острые ребра являются такими участками однако следует подчеркнуть, что возникновение и распределение коррозионных питтингов — сложный вопрос. Кроме того, питтинг может вызываться внешними факторами, например, когда извне какие-либо вещества осаждаются на поверхности. Питтинги могут зарождаться не только в точках, характеризуемых несовершенством поверхностной пленки, но и на участках, предопределенных особенностями металлической подложки. Они могут соответствовать точкам выхода", на поверхность гетерогенных составляющих сплава или быть связанными с фазовыми границами или границами зерен. Твердые неметаллические включения, возникающие при литье или дальнейшей обработке, а также вследствие загрязняющих примесей, (например, сульфиды в нержавеющих сталях), также могут оказаться точками зарождения питтингов. Размеры подобных металлургических де ктов могут значительно изменяться от меньших микрона, наирим равных нескольким атомным диаметрам, до больших миллиметра, ви-  [c.167]

Можно выделить четыре основные вида несовершенств точечные (нульмерные], линейные (одномерные), поверхностные (двумерные) и объемные (трехмерные).  [c.467]

Применяемые на практике металлы и сплавы представляют собой твердые растворы с упорядоченным и неупорядоченным аморфным распределениями атомов. Твердые растворы могут содержать несовершенства четырех основных типов точечные (нульмерные), линейные (одномерные), поверхностные (двухмерные) и объемные (трехмерные). К первым относятся вакансии (свободные узлы кристаллической решетки) и межузельные (смещенные) атомы ко вторым — цепочки точечных дефектов, различные типы дислокаций к третьим — дефекты упаковки атомов, границы зерен, блоков, двойников и т. д. к четвертым дефектам относятся поры, включения, выделения, технологические трещины и тому подобные образования, размеры которых намного превосходят межатомные расстояния.  [c.321]

В известных работах А. Ф. Иоффе с сотрудниками [64] была поставлена серия опытов по изучению прочности кристалло В каменной соли при различных состояниях поверхности образца. Было обнаружено, что прочность кристалла с растворенным в горячей воде поверхностным слоем во много раз превышает его техническую прочность, достигая в некото1рых случаях значения теоретической прочности. Основная идея этих работ состоит в доказательстве, что уменьшение реальной прочности по сравнению с теоретической происходит из-за поверхностных несовершенств  [c.13]

Помимо внутреннего испарения, возможно полное или частичное испарение атомов с поверхности кристалла. При полном испарении атом покидает поверхность кристалла и переходит в пар, при частичном испарении он с поверхности переходит в положение над поверхностью (рис. 1.16, б). В обоих случаях в поверхностном слое кристалла образуется вакансия. Путем замещения глубже лежащим атомом вакансия втягивается внутрь кристалла. Такое образование вакансий не сопровождается од1ЮвремеииыМ внедрением атомов в междоузлия, т. е. появлением дислоцированных ато- юв. Такого рода вакансии называют дефекталщ по Шоттки. Их -источником могут быть и всевозможные несовершенства кристалла недостроенные атомные плоскости, Гранины блоков и зерен, микроскопические трещины и др.  [c.23]

Известно, что сила адгезии частицы пропорциональна поверхностному натяжению. Факторов, влияющих на адгезию, много, и конкретные случаи взаимоотношений частицы, металла катода и среды требуют отдельного экспериментального изучения, тем более, что теоретические аилы адгезии превышают на 2—3 порядка эноперимен-тально найденные. Это связано с тем, что в расчетах необходимо учитывать не радиус частицы, а размеры микроскопических выступов, которыми фактически осуществляется контакт частицы с поверхностью. По этой причине, а также из-за несовершенства способов определения поверхностного натяжения адгезия определяется только экспериментально.  [c.77]

Известно, что структура п свойства отливок зависят главным образом от свойств жидкого металла и литейной формы, характера кристаллизации и затвердевания металла в форме. При этом разнородные структурные зоны отливки, состоящие из мелких, столбчатых и равноосных кристаллов, существенно различаются по плотности, прочности и степени физической неоднородности. Фасонные отливки и слитки, получаемые по существующим технологическим процессам, характеризуются наличием в мелкокристаллической зоне (поверхностном слое металла) большого количества газовых и неметаллических включений, трещин, пригара и других дефектов, резко ухудшающих физико-механические свойства отливок. При обжиге сднтков и отливок мелкокристаллический поверхностный слой металла окисляется и превращается в окалину (на слитках и крупных отливках толщина окисленного слоя достигает 5 мм). Поэтому в отливках предусмотрены специальные припуски металла на механическую обработку, а слитки из качественной легированной стали и специальных сплавов перед прокаткой подвергаются обдирке на станках. Таким образом, вследствие несовершенства технологии поверхностная мелкокристаллическая зона отливок и слитков в большинстве случаев превращается в отходы и безвозвратные потери производства.  [c.3]

Найдено, что на пластичность хрома влияют поверхностные условия оптимальные результаты получались только после удаления электрополировкой тонкого слоя 143, 881- Этот эффект объясняется удалением либо поверхностных несовершенств, либо материала, очень сильно загрязвен-ного азотом во время обработки.  [c.883]

Как и для других неметаллических тугоплавких соединений, составляющих основу современной керамической промышленности, работы по компьютерному моделированию оксидов алюминия следуют двум взаимосвязанным направлениям. В рамках первого из них ставится проблема наиболее корректного исследования фундаментальных электронных свойств, природы химической связи и основных физико-химических характеристик полиморфных модификаций А12О3, рассматриваемых как идеальные кристаллы. Второе направление обращается к описанию А1зОз как элемента керамических материалов, акцентируя внимание на изменениях характеристик оксидов в результате наличия разного рода несовершенств кристаллов (вакансии, легирующие элементы), рассматриваются поверхностные свойства, пленочные состояния и гетероструктуры, предпринимаются попытки описания границ зерен, моделируются процессы адсорбции и т. д.  [c.117]


При оценке факторов, влияющих на технологическую наследственность, учитываются условия формирования поверхностного слоя, ми1фогеометрия поверхности, наклеп поверхностного слоя, остаточные напряжения, жесткость и тепловые деформации технологической системы станок - приспособление - инструмент - деталь. Может сказываться также несовершенство методов межоперационного контроля деталей.  [c.344]

Primes — Высококачественные листы. Листы и плиты, свободные от поверхностных дефектов и других видимых несовершенств.  [c.1022]

Третья причина — несовершенства границ раздела, главные из которых — градиенты состава и поверхностная шероховатость. Учет градиентов состава вблизи границ раздела позволяет описать кривые отражения МИС в широком диапазоне углов, включая много брэгговских максимумов [51, 52]. При этом значения градиентов являются подгоночными параметрами. Как отмечалось выше, из модели Розенблюта следует, что малая шероховатость поверхности в сглаживающих пленках эквивалентна градиентам концентрации. Интенсивность диффузного рассеяния, связанная с шероховатостью, определяется уравнением (И), которое с учетом брэгговского условия (9) можно записать в виде  [c.445]

К настоящему времени в СССР и за рубежом усилиями многих ученых осуществлены важные исследования явлений хрупкого разрушения твердых тел как в плане решения соответствующих краевых задач механики и создания физически более обоснованных критериев разрушения, так и в области разработок методов оценки склонности конструкционных материалов к хрупкому разрушению (см., например, обзоры в работах [9, 82, 118, 145]). Необходимость в таки исследованиях обуслоЬ-лепа, с одной стороны, тем, что высокопрочные конструкционные материалы (например, жаропрочные сплавы, упрочненные стали, металлокерамические материалы, некоторые пластмассы), как правило, являются хрупкими материалами, т. е. такими, которые уже при нормальных температурах и малых скоростях нагружения разрушаются путем распространения трещины без предварительных пластических деформаций макрообъемов тела. (При низких температурах, повышенных скоростях нагружения, воздействии некоторых поверхностно-активных сред, наводороживании и в других условиях, приводящих к ограничению пластического течения конструкционного материала, его разрушение путем распространения трещины доминирует). С другой стороны, реальные условия эксплуатации конструкции всегда предусматривают наличие некоторой жидкой или газовой среды. Эта среда проникает в деформируемое тело (элемент конструкции) через его структурные несовершенства — дефекты (макро- или микротрещины, границы зерен, включений) и особенно интенсивно взаимодействует с участками тела, деформированными за предел упругости. К таким участкам относятся окрестности резких концентраторов напряжений (трещины, остроконечные полости или жесткие включения и др.). Именно в окрестности подобных дефектов среда, изменяя физико-механические свойства деформируемого материала, в первую очередь его сопротивление зарождению и развитию трещины, оказывает существенное влияние на служебные свойства (несущую способность) рабочего тела в целом.  [c.9]

Представление о плоскостном (поверхностном) несовершенстве в рамках континуальной механики материалов введем в рассмотрение-с помощью идеи о дислокациях Сомилианы [203, 197, 139, 48]. Мысленно разрежем тело но произвольной поверхности S, ограниченной на краю линией L, как изображено на рис. 30, а. Получившуюся фигуру однозначно определяет положение в пространстве поверхности S и окаймляюш ей ее линии L. Условимся выбирать направление линии L произвольно, характеризуя его в каждой  [c.167]

Представления о планарном дефекте как дислокации Сомилиа-ны вытекают из самых общих определений в механике сплошной среды. Детальный разбор процессов движения дислокаций Сомилиа-ны ж вытекающие следствия содержатся в [4Й. Ясно, однако, что механистическое понятие поверхностного несовершенства посредством дислокации Сомилианы основано на очень жестких требованиях, не отвечающих физическому содержанию внутренней границы раздела как объекта кристалла.  [c.169]

По адсорбционной теории, развиваемой Г. Улигом, процесс коррозионного растрескивания объясняется ослаблением межатомных связей в напряженном состоянии сплава при адсорбции анионов раствора, происходящей преимущественно на подвижпых дислокациях или других несовершенствах структуры. Это приводит к снижению поверхностной энергии и облегчает разрыв межатомных связей металла. На основе этой теории объясняется специфичность сред, вызывающих коррозионное растрескивание, действие коррозионной защиты.  [c.111]


Смотреть страницы где упоминается термин Несовершенства поверхностные : [c.24]    [c.12]    [c.171]    [c.127]    [c.7]    [c.317]    [c.58]   
Металловедение и термическая обработка стали Том 1, 2 Издание 2 (1961) -- [ c.364 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте