Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кристаллов несовершенство

Характер и степень нарушения правильности или совершенства кристаллического строения определяют в значительной мере свойства металлов. Поэтому необходимо рассмотреть встречающиеся несовершенства кристаллического строения или, что то же самое, строение реальных кристаллов.  [c.28]

Таким образом, реальный металлический кристалл содержит атомно-кристаллические (вакансии, дислокации) и структурные (блоки, фрагменты) несовершенства.  [c.33]


Кристаллические решетки зерна могут иметь различные структурные несовершенства точечные, линейные и поверхностные, которые возникают в результате образования вакансий — мест не занятых атомами дислоцированных атомов, вышедших из узла решетки дислокаций, возникающих при появлении в кристалле незаконченных атомных плоскостей примесных атомов, внедренных в кристаллическую решетку.  [c.7]

В реальных кристаллах вследствие различных несовершенств их строения свойства существенно отличаются от свойств, определенных теоретически (рис. 1.8). Так, например, экспериментально установленная величина критического сопротивления деформации (сдвигу) отличается на несколько порядков от теоретической величины, рассчитанной по формуле.  [c.16]

В структуре реальных кристаллов имеются и более значительные несовершенства. Так, кристаллы металлов обычно состоят из большого числа областей размером около 1 мк, расположенных под углом в десятые доли градуса. Эти отдельные области с правильной упаковкой атомов называют блоками (рис. 1.10), На границе между блоками упаковка атомов искажена.  [c.17]

Несовершенства строения кристаллов влияют на энергетическую неустойчивость кристаллической системы в целом. В наибольшей степени несовершенства строения проявляются в бездиффузионных процессах при самопроизвольной перестройке кристаллической решетки. Поскольку несовершенства строения характеризуются повышенной величиной свободной энергии и их передвижение, как указывалось ранее, в зависимости от типа кристаллической решетки также обусловлено энергетическими факторами, большое значение в установлении наиболее оптимальных в энергетическом отношении способов перестройки решетки кристаллов играют дислокации. Винтовая дислокация, например, на поверхности кристалла стимулирует кристаллизацию с минимальными затратами энергии по сравнению с кристаллизацией на идеально плоской грани.  [c.26]

Существенными недостатками при выращивании монокристаллов из расплава являются неравномерное распределение примесей (а следовательно, и электрических свойств) по длине кристалла, винтовая макронеоднородность распределения примесей в кристаллах, а также структурные несовершенства в кристаллах Се и 51.  [c.391]

Объемные несовершенства кристаллов могут быть вызваны микроскопическими порами, трещинами, инородными включениями.  [c.473]

Дислокацией называется линейное несовершенство, образующее внутри кристалла зону сдвига.  [c.47]

Линейные дефекты малы в двух измерениях, в третьем они могут достигать длины кристалла (зерна). К линейным дефектам относятся цепочки вакансий, межузельных атомов и дислокации. Дислокации являются особым видом несовершенств в кристаллической решетке. С позиции теории дислокаций рассматриваются прочность, фазовые и структурное превращения.  [c.265]


Для температур, близких к температуре плавления кристалла, / может уменьшаться до 6—10 межатомных расстояний. При очень низких температурах / достигает величины порядка 0,1 см. Характер изменения длины свободного пробега фонона в зависимости от температуры во многом накладывает отпечаток на температурную зависимость теплопроводности. Величина средней длины свободного пробега фонона I определяется главным образом двумя процессами — рассеянием на статических несовершенствах решетки (например, дефекты) и рассеянием фононов на фононах. Если силы взаимодействия между атомами в решетке являются чисто гармоническими, то никакого механизма фонон-фононных  [c.43]

Рассеиваться фононы могут не только на фононах, но и на точечных дефектах (например, на примесных атомах), на линейных (дислокации), на границах зерен в поликристаллах и т. д. Перечисленные несовершенства кристаллической решетки могут поглощать и энергию, и импульс фонона. Поэтому в кристаллах с большим количеством дефектов длина свободного пробега фононов I мала при любых температурах.  [c.46]

За последние десятилетия в физике твердого тела получило широкое распространение представление о несовершенствах кристаллической решетки, называемых дислокациями. Этим несовершенствам приписывается основная роль при объяснении ряда особенностей поведения реальных кристаллов. Механизм пластической деформации, ползучести, разрушения, рассеяния энергии при циклическом деформировании связываются большинством современных авторов с перемещением дислокаций внутри кристалла. Дислокационные представления используются также для объяснения механизма роста кристалла. Возможные дефекты кристаллической решетки не ограничиваются, конечно, одними дислокациями этим термином называются дефекты особого рода, обладающие совершенно определенными свойствами. Однако дислокационные представления, как оказалось, имеют настолько общий характер, что на их основе можно построить очень большое количество разного рода моделей, объясняющих те или иные свойства реального кристалла, и выбрать из этих моделей те, которые наилучшим образом отвечают опытным данным.  [c.453]

Оно написано на базе современных представлений о дислокационной структуре металлов. В нем рассматриваются структурные несовершенства кристаллов, механизмы пластической деформации, особенности пластической деформации моно- и поликристаллов, изменение структуры и свойств, вызываемые деформацией и последующим нагревом, динамическая рекристаллизация и др. Анализируются технологические свойства металлов и сплавов, такие как сопротивление деформации (напряжение течения) и пластичность — особо важная характеристика, поскольку обработка давлением допустима только до тех пор, пока пластичность материала исчерпана не до конца.  [c.4]

ЭЛЕМЕНТЫ ТЕОРИИ СТРУКТУРНЫХ НЕСОВЕРШЕНСТВ В КРИСТАЛЛАХ  [c.26]

I. СТРУКТУРНЫЕ НЕСОВЕРШЕНСТВА В РЕАЛЬНЫХ КРИСТАЛЛАХ  [c.27]

Структурные несовершенства (дефекты) кристаллов по геометрическому признаку подразделяют на четыре группы 1) точечные 2) линейные 3) поверхностные (или плоские) 4) объемные.  [c.27]

Движению дислокаций препятствуют границы зерен, частицы второй фазы, концентрационные неоднородности, структурные несовершенства (в частности, другие дислокации), флуктуации в решетке, связанные с неравномерным распределением энергии или примесей. Поэтому с повышением степени деформации дислокации перераспределяются из-за общего повышения плотности дислокаций с созданием стенок, разбивающих кристалл на объемы, сравнительно свободные от дислокаций, т. е. будет происходить образование ячеистой структуры. Начальная стадия пластической деформации сопровождается появлением макронеоднородностей рас-  [c.250]

Модуль упругости Е практически не зависит от химического состава и термической обработки стали. Приведенный здесь предел прочности установлен экспериментальным путем. Он во много раз (в 100 раз и более) меньше теоретических значений, подсчитанных исходя из сил межатомных связей. Это объясняется отклонением строения реальных кристаллов металла от идеального строения кристаллических решеток, т. е. несовершенством (дефектами) кристаллических решеток реальных металлов. Наибольшее влияние на снижение прочности металла оказывают  [c.37]


В термодинамическом плане дислокация должна рассматриваться как несовершенство кристалла, вызывающее отклонение состояния кристалла от равновесия. Это обусловлено тем, что с дислокацией связана положительная энергия Гиббса, равная на единицу длины дислокации (с точностью до числового коэффициента) следующей величине  [c.368]

Линейные несовершенства кристаллической решетки называются дислокациями. Дислокации можно представить таким образом если надрезать идеальный кристалл и сместить края надреза на величину, кратную периоду решетки, то внутри кристалла у края надреза возникнет некоторое искажение, которое и является дислокацией.  [c.10]

Наиболее строгое обоснование причин расхождения реальной и теоретической прочности дает дислокационная теория скольжения, на основе которой показано, что локализованное скольжение при наличии дислокаций в кристаллической решетке может начаться при весьма небольших напряжениях. Таким образом, причиной низкой прочности реальных металлов является наличие в структуре материала дислокаций и других несовершенств кристаллического строения. Если резко снизить количество таких несовершенств и таким образом приблизить кристаллическое строение металла к совершенному, то его прочность должна быть близка к теоретической. Это положение нашло в последние годы непосредственное экспериментальное подтверждение. Нитевидные кристаллы (усы) показывают высокую прочность, приближающуюся к теоретической.  [c.97]

Нитевидные кристаллы с малым числом несовершенств характеризуются  [c.105]

Этот уровень исследований позволил развить фундаментальные представления о несовершенстве в кристаллах и особенно о дислокациях, их взаимодействиях и, движении, о силах упругости с точки зрения квантовой механики, о диффузии атомов в твердых телах ИТ. д., которые являются физической основой для решения основных задач прочности и долговечности материалов,  [c.59]

Особенность начального образования оксида состоит в том, что из-за несовершенства поверхности отдельные зародыши располагаются на металле хаотично. Поскольку интенсивность и характер хемосорбции во многом определены ориентацией кристаллов, наличием кромок, пустот, дефектов на поверхности и т. д., предполагается, что хемосорбция является преобладающей в окислении металла в начальной стадии образования оксида, Число зародышей мало зависит от времени, а возрастает с повышением парциального давления кислорода-в окружающей среде. С повышением температуры число зародышей, приходящихся на единицу поверхности, убывает. Объясняется это увеличением поверхностной диффузии, что в свою очередь расширяет зародыши по размерам. После об-разования размещающихся хаотично на поверхности зародышей оксида окисление в дальнейшем идет путем роста отдельных кристаллов до тех пор, пока поверхность полностью не покрывается тонким оксидным слоем. Иногда такие дискретные зародыши и кристаллы оксидов могут образовываться даже после возникновения тонкой оксидной пленки [62]. Им часто отводят важную роль в общем процессе окисления металла.  [c.46]

В таком случае приложение нагрузки т (меньшей предела текучести) к металлу, имеющему несовершенства кристаллического строения, вызовет неоднородное распределение внутренних напряжений в очагах локального плавления приложенное напряжение преобразуется в гидростатическое давление (фазовое состояние близко к жидкому, дальний порядок отсутствует) а в остальной части кристалла напряжение в элементарных объемах подчиняется законам упругости твердого тела. Таким образом, в местах дефектов структуры типа дислокаций возможно равенство т = Р. Например, в работе [16] при вычислении свободной энергии вакансий постулируется справедливость этого соотношения для некоторых областей материалов .  [c.28]

Кристаллические тела не идеальны в них всегда в огромном количестве суш,ествуют нарушения структуры, называемые несовершенствами (или дефектами). В силу ряда- причин отдельные кристаллы в реальном металле не имеют возможности принять правильную форму. Кристаллы неправильной формы называются зернами или кристаллитами. Их размер от 0,1 до 10 мкм. Напомним, что разрешающая способность микроскопа равна длине волны све-  [c.31]

МОЗАЙЧНОСТЬ КРИСТАЛЛОВ — несовершенство кристаллич. структуры, состоящее в том, что монокристаллы как бы состоят из блоков, несколько разори-ент[1рованных (до неск. мин.) друг относительно друга. Большинство реальных монокристаллов состоит из блоков размером —10 см. М. к. обусловлена дислокациями на границах блоков.  [c.185]

Комплексная частота 185, 186 Конические волиы 190 Конечно-разностный метод 200 Кристаллов несовершенство 141  [c.257]

Отметим, что реальные кристаллы либо с самого своего возник-иовения содержат дислокации, либо имеют какие-то иные несовершенства и в них дислокации образуются уже при низких напряжениях сдвига. Поэтому-то при низких напряжениях дислокации движутся через кристаллическую решетку, отчего и происходит пластическая деформация кристалла. После того как дислокация выйдет наружу кристалла, форма его изменится, но структура останется прежней (рис. 117, б). Возникают новые дислокации и движутся через кристалл. Суммарно результат этих скольжений в зернах проявляется в виде пластической деформации образца.  [c.107]

Отметим, что реальные кристаллы либо с самого своего возникновения содержат дислокации, либо имеют какие-то иные несовершенства и в них дислокации образуются уже при низких напряжениях сдвига. Поэтому-то при низких напряжениях дислокации движутся через клисталлическую решетку, отчего и происходит пластическая деформация кристалла. После того как дислокация выйдет наружу кристалла, форма его изменится, но структура оста-  [c.115]

В известных работах А. Ф. Иоффе с сотрудниками [64] была поставлена серия опытов по изучению прочности кристалло В каменной соли при различных состояниях поверхности образца. Было обнаружено, что прочность кристалла с растворенным в горячей воде поверхностным слоем во много раз превышает его техническую прочность, достигая в некото1рых случаях значения теоретической прочности. Основная идея этих работ состоит в доказательстве, что уменьшение реальной прочности по сравнению с теоретической происходит из-за поверхностных несовершенств  [c.13]


Анализ данного уравнения начнем с экстремального случая, когда структура металла близка к идеальному кристаллическому строению. Прочность такого металла, примером которого являются нитевидные кристаллы (усы), есть максимально возможная для кристаллического тела, как такового, и близка к теоретической прочности. Малое количество несовершенств кристаллического строения приводит к тому, что при нагружении такою металла практически весь его объем будет равномерно поглонщть энергию искажен.1я и к определенному моменту каждый единичный объем во всем кристалле будет насыщен  [c.20]

Композит А1 — AbNi обладает превосходной термической стабильностью вплоть до температур, составляющих 0,97 эвтектической температуры, и не обнаруживает снижения прочности при умеренных температурах [4]. Сопротивление ползучести (100-часовая прочность) также не снижается при температуре, составляющей 0,9 эвтектической [73]. Значения данной характеристики при температурах, не превышающих 0,6 эвтектической, растут с уменьшением расстояния между нитевидными кристаллами (стерженьками) упрочняющей фазы [7]. Однако характеристики ползу-ч-ести чрезвычайно чувствительны к структурным несовершенствам микроструктура, в которой нарушено направленное расположение волокон, обладает при тех же температурах гораздо более низким сопротивлением ползучести [7].  [c.262]

Помимо внутреннего испарения, возможно полное или частичное испарение атомов с поверхности кристалла. При полном испарении атом покидает поверхность кристалла и переходит в пар, при частичном испарении он с поверхности переходит в положение над поверхностью (рис. 1.16, б). В обоих случаях в поверхностном слое кристалла образуется вакансия. Путем замещения глубже лежащим атомом вакансия втягивается внутрь кристалла. Такое образование вакансий не сопровождается од1ЮвремеииыМ внедрением атомов в междоузлия, т. е. появлением дислоцированных ато- юв. Такого рода вакансии называют дефекталщ по Шоттки. Их -источником могут быть и всевозможные несовершенства кристалла недостроенные атомные плоскости, Гранины блоков и зерен, микроскопические трещины и др.  [c.23]


Смотреть страницы где упоминается термин Кристаллов несовершенство : [c.422]    [c.69]    [c.25]    [c.454]    [c.71]    [c.12]    [c.247]    [c.236]   
Возбуждение и распространение сейсмических волн (1986) -- [ c.141 ]



ПОИСК



Дифракция в сходящемся кристаллов несовершенства

Несовершенства в строении кристаллов

Структурные несовершенства в кристаллах германия и кремния

Структурные несовершенства в реальных кристаллах

Элементы теории структурных несовершенств в кристаллах



© 2025 Mash-xxl.info Реклама на сайте