Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Фазовый динамический

Динамической погрешностью является не только погрешность, оцениваемая по формуле (2.29), но, например, и погрешность при идеальной передаче формы сигнала, сдвинутого во времени по фазе на т-фазовую динамическую погрешность  [c.87]

Появление этого важнейшего направления голографической интерферометрии практически полностью связано с разработкой и внедрением высокочувствительных ФРК. Ниже при рассмотрении физических основ явления мы ограничимся анализом случая фазовой динамической решетки, имея в виду, что исходные результаты могут быть получены также и на амплитудных динамических голограммах.  [c.219]


Теперь под интегралом появляется фазовая динамическая функция bi (q, р), которая, согласно правилу Вейля (3.6.3), (3.6.4), соответствует квантовому оператору bi. Следовательно,  [c.109]

В (3.4.54) для сокращения выкладок предполагалась малость членов, связанных с динамическими эффектами из-за фазовых превращений, что в большинстве практических задач даже при наличии сравнительно интенсивных фазовых превращений вполне допустимо (см. замечание перед (2.1.25)).  [c.138]

Выражение для x i2V)i записано в предположении однородности интенсивности фазовых переходов на поверхности дисперсной частицы и малости на ней динамических эффектов из-за несовпадения скоростей фаз (г л г г N )-  [c.187]

В рассматриваемых случаях можно выделить две стадии первая, или динамическая, во время которой в течение времени давление в пузырьке отличается от роо = Ре здесь возможны пульсации вторая или термическая стадия, когда давление и температура газа установились и равны pgg =роо+2Е/а и T ge = s(Poo -Ь 21.1а), а пузырек монотонно растет в перегретой жидкости (pg С Ро) или уменьшается в переохлажденной жидкости (pg >> ро). Термическая стадия определяется способностью жидкости отводить или подводить теплоту фазовых переходов. Следует отметить существенно меньшее, чем в газовых пузырьках,  [c.287]

Из представленных на рис. 4.4 результатов следует, что различные схемы (4.15)-(4.17) расчета динамической вязкости гомогенной смеси приводят к существенно отличающимся результатам. Уменьшение относительных фазовых проницаемостей в модели раздельного течения (уве-  [c.92]

Инварианты, не содержащие гамильтониана и, следовательно, сохраняющиеся для всех динамических систем, движущихся в потенциальных нолях, называются универсальными. Инвариант Пуанкаре и инвариант фазовый объем — универсальные, а инвариант Пуанкаре — Картана не относится к универсальным.  [c.305]

Если оператор Т является нелинейным, то и соответствующая динамическая система называется нелинейной. Кроме того, оператор Т может быть непрерывным или дискретным. Форма задания оператора Т может быть дифференциальной, интегральной, матричной, табличной и т. д. В этой книге речь пойдет о дискретных математических моделях динамических систем, состояние которых определяется конечным числом переменных, с непрерывным фазовым пространством и непрерывным дифференциальным оператором Т, в общем случае.нелинейным. Таким образом, мы будем рассматривать динамические системы, описываемые нелинейными дифференциальными уравнениями в обыкновенных производных.  [c.10]


Фазовый портрет динамической системы.  [c.12]

Как уже было отмечено выше, исследование поведения динамической системы сводится к изучению поведения траекторий в фазовом пространстве Ф. Структура разбиения пространства Ф на фазовые траектории называется фазовым портретом рассматриваемой динамической системы. С геометрической точки зрения под структурой разбиения фазового пространства на траектории понимается геометрическая картина взаиморасположения фазовых траекторий в пространстве Ф. Следует отметить, что полное описание фазового портрета для произвольной динамической системы представляет собою очень сложную и до сих пор нерешенную проблему. Однако ряд основных особенностей этой структуры изучен, а для некоторых классов динамических систем в настоящее время получено полное описание фазового портрета.  [c.12]

Основную роль в описании структуры фазового пространства динамической системы играет разделение фазовых траекторий на обыкновенные и особые. К последним принадлежат особые точки, соответствующие состояниям ран-  [c.12]

Рассматриваемый случай может возникнуть, например, при исследовании движения тела в вязкой среде, когда масса тела пренебрежимо мала. При однозначной функции / х) такая динамическая модель оказывается вполне корректной, однако в случае неоднозначности /(х) хотя бы на некотором интервале изменения х можно прийти к противоречивой модели. В последнем случае возникающее противоречие устраняется или при помощи дополнительного постулата о мгновенном перескоке изображающей точки в некоторое положение на фазовой прямой, которое определяется или из энергетических соображений, или при помощи рассмотрения предельных движений системы второго порядка при стремлении малого параметра ц к нулю.  [c.24]

Гармонический осциллятор, рассмотренный выше, представляет собою пример автономной консервативной системы второго порядка. Как мы видели, такая система обладает интегралом движения (обычно интегралом сохранения энергии). Фиксируя значение произвольной постоянной в интеграле движения, мы получаем динамическую систему с одномерным фазовым пространством, которое может представлять замкнутую или незамкнутую кривую, состоящую из одной или нескольких фазовых траекторий. Придавая произвольной постоянной различные значения, получим множество одномерных фазовых пространств, которые в совокупности образуют фазовое пространство консервативной системы второго порядка. В конечном итоге двумерное фазовое пространство этой системы оказывается разбитым на фазовые траектории. Замкнутая фазовая траектория соответствует, как известно, периодическому движению в системе.  [c.29]

В простейшем случае фазовая поверхность представляет собою обычную плоскость с декартовыми координатами л , у, а функции Р х, у) я Q х, у) являются аналитическими на всей плоскости. Основная задача исследования динамической системы состоит в том, чтобы выяснить качественную картину разбиения фазовой плоскости на траектории  [c.41]

Из всего многообразия динамических систем второго порядка полезно выделить системы, в которых может осуществляться периодическое изменение состояния системы. На фазовой плоскости периодическому движению соответствует замкнутая траектория. Если эта замкнутая траектория является одной из континуума вложенных одна в другую кривых, то мы имеем дело с консервативной системой. В такой системе период и амплитуда периодических колебаний зависят от начальных условий, а сама система является негрубой.  [c.46]

Поскольку значения (в, /) и (0 + 2л, г/) соответствуют одному и тому же состоянию, фазовым пространством рассматриваемой динамической системы является поверхность цилиндра, на котором вдоль образующей отложена величина //, а вдоль направляющей — угол 0. Будем рассматривать лишь область у > О (тем самым исключается случай полета хвостом вперед), в которой интегральные кривые, согласно (3.17), удовлетворяют уравнению dij у sin в+ ау )  [c.62]


Многие стороны поведения фазовых траекторий динамической системы, а в ряде случаев и полная картина разбиения фазового пространства на траектории могут быть выяснены путем исследования поведения последовательных точек пересечения траекторий с так называемым отрезком без контакта (в случае двумерного фазового пространства) или с секущей поверхностью (в случае трехмерного фазового пространства). Эта последовательность точек пересечения образует некоторое точечное преобразование Т, к изучению которого и сводится задача об исследовании поведения фазовых траекторий. При этом оказывается, что структура рассматриваемой динамической системы взаимно однозначно определяется структурой порождаемого ею точечного отображения Т. Это означает, что каждому вопросу в отношении структуры решений дифференциальных уравнений отвечает некоторый вопрос, относящийся к структуре точечного отображения Т. В частности, периодическим решениям дифференциальных уравнений или, что то же самое, замкнутым фазовым траекториям ставятся в соответствие неподвижные точки соответствующею точечного отображения Т,  [c.70]

Орбитно устойчивому или орбитно неустойчивому периодическому движению отвечает соответственно устойчивая или неустойчивая неподвижная точка. Для того чтобы убедиться в справедливости всех этих утверждений, а также выяснить другие свойства точечного отображения, вновь рассмотрим случай двумерного фазового пространства, т. е. рассмотрим автономную динамическую систему второго порядка, поведение которой описывается дифференциальными уравнениями  [c.71]

Обратимся теперь к исследованию поведения траекторий в трехмерном фазовом пространстве. Поведение соответствующей динамической системы описывается системой трех нелинейных дифференциальных уравнений первого порядка. Будем по-прежнему предполагать, что для их решений в сторону возрастания времени соблюдаются теоремы единственности и непрерывной зависимости от начальных условий. Введем понятие поверхности без контакта. По определению поверхностью без контакта называется гладкая поверхность, во всех своих точках пересекаемая фазовыми траекториями без касания. Секущей поверхностью будем называть поверхность без контакта,  [c.75]

В ряде случаев рассмотрение динамической системы сводится к исследованию системы дифференциальных уравнений (4.1), правые части которых терпят разрывы непрерывности первого рода на некоторых гладких поверхностях Si, S2,. .., 5ft, разбивающих фазовое пространство на некоторые области D , D , ., Dm- В каждой из областей Dj а = 1, 2,. ... т) движение системы определяется дифференциальными уравнениями  [c.81]

В рассматриваемой динамической системе не могут происходить скачкообразные изменения фазовых переменных, т. е. они изменяются во времени непрерывно (по крайней мере в малой окрестности границы S). Тогда при возрастании времени изображающая точка, пересекая границу S, на участках (— оо, А) и (В, + °о) переходит из одной области в другую. Непрерывный переход фазовой точки через поверхность разрыва из одной области гладкости в другую соответствует так называемому сшиванию решений по  [c.82]

Голограммы бьшают пропускающими (схема Лейта — Упатниекса [26]) и отражательными (схема Денисюка [28]) ) с весьма различными спектральными и угловыми селективностями, дифракционными эффективностями и их зависимостями от толщины. Все это, как мы увидим ниже, существенно сказывается не только на характеристиках генерации на динамических решетках обоих типов, но и на возможности ее осуществления в различных схемах резонаторов. Различают фазовые и амплитудные решетки, в которых пространственно модулированы соответственно действительная и мнимая части комплексного показателя преломления регистрирующей среды. Предельная дифракционная эффективность фазовых голограмм составляет 100%, а амплитудных - десятки процентов. Поэтому в лазерах на динамических решетках используются только фазовые динамические решетки, что и будет подразумеваться в дальнейшем изложении. Различают также тонкие (двумерные) и объемные (трехмерные) голограммы. При считывании тонких голограмм возникают несколько дифракционных порядков, что снижает дифракционную эффективность. В объемных голограммах дафракция происходит по закону Брэгга. При этом остается только один дифракционный пучок (—1)-го порядка, представляющий собой восстановленный сигнальный пучок.  [c.19]

Согласно критерию Найквиста, динамическая система устойчива, если годограф Найквиста (рис. 1.27, а), построенный при изменении со от О до оо (АФЧХ — амплитудно-фазовая частотная характеристика системы), не охватывает точку (—1 /0). При анализе устойчивости по ЛЧХ строятся логарифмическая амплитудно-частот-  [c.55]

На макроуровне используют укрупненную дискретизацию пространства по функциональному признаку, что приводит к представлению ММ на этом уровне в виде систем обыкновенных дифференциальных уравнений (ОДУ). В этих уравнениях независимой переменной является время t, а вектор зависимых переменных V составляют фазовые переменные, характеризующие состояние укрупненных элементов дискретизированного пространства. Такими переменными являются силы и скорости механических систем, напряжения и силы тока электрических систем, давления и расходы гидравлических и пневматических систем и т. п. Системы ОДУ являются универсальными моделями на макроуровне, пригодными для анализа как динамических, так и установившихся состояний объектов. Модели для установившихся режимов можно также представить в виде систем алгебраических уравнений. Порядок системы уравнений зависит от числа выделенных элементов объекта. Если порядок системы приближается к 10 , то оперирование моделью становится затруднительным и поэтому необходимо переходить к представлениям па метауровпе.  [c.38]


Для оценки динамической усгойчивости систем Интерес представляют их часготные характеристики. Амплитудная частотная характеристика - это зависимость отношения амплитуды перемещений к амплитуде силы от частоты. Фазовая частотная характеристика - это зависимость сдвига фаз между силой и перемещением от частоты.  [c.482]

Интегральный инвариант Пуанкаре — Картана. Рассмотрим динамическую систему, движущуюся в потенциальном поле и имеющую гамильтониан Н. В (2п1)-мерном расширенном фазовом пространстве q, р, t этой системы выберем произвольный замкнутый несамопересекающийся контур и выберем какую-либо точку на этом контуре, скажем, точку А. Эта точка полностью определяет систему гамильтоновых переменных q , рд и может быть принята за начальную. Тогда при заданной функции Н движение определяется однозначно и, следовательно, однозначно определяется соответствующий прямой путь в рассматриваемом расширенном фазовом пространстве. Теперь возьмем  [c.294]

В настоящее время для исследования этих систем используются два разных подхода, отличающихся типом математической модели, которая отражает поведение динамической системы. При одном подходе математическая модель динамической системы 5 основывается на понятии состояния X, под которым понимается описание системы 5 в некоторый момент времени ), и на понятии оператора Т, определяющего изменение этого состояния х во времени. Оператор Т указывает процедуру, выполняя которую можно по описанию л (О в момент времени t найти описание л (/ + А ) той же системы в некоторый следующий момент времени t + Af. Если оператор Т не зависит явно от времени, то система S называется автономной, в противном случае — неавтономной. Состояние л системы S можно рассматривать как точку некоторого пространства Ф, называемого фазовым пространством системы 5. Изменению состояния х отвечает в фазовом пространстве Ф движение соответствующей T04i y, которая называется изображающей. При этом движении изображающая точка описывает кривую, назы-  [c.8]

Математические модели динамических систем можно классифицировать в зависимости от структуры их фазового пространства Ф и вида оператора Т. Различают случаи непрерывного и дискретного фазового пространства в зависимости от того, какой ряд значений могут принимать величины X, характеризующие состояние динамической системы непрерывный или дискретный. Изменение состояигя X во времени также может быть непрерывным или дискретным. Изменение непрерывно во времени, если h.t — произвольное неотрицательное число, и дискретно во времени, если может принимать лишь некоторые дискретные положительные значения. Операторы Т принято различать по их свойствам и по форме задания. Если оператор Т обладает свойством суперпозиции, то он называется линейным.  [c.9]

Из физических соображений очевидно, что в дифференциальных уравнениях (3.1), описывающих движение реальной физической системы, ни один из учитываемых нами факторов не может оставаться абсолютно неизменным во времени. Следовательно, правые части уравнений (3.1), вообще говоря, изменяются вместе с входяпшми в них физическими параметрами. Однако если эти изменения достаточно малы, то, как показывает практика, физическая система как бы не замечает этих изменений, качественные черты ее поведения сохраняются. Поэтому, если мы хотим, чтобы уравнения (3.1) отобразили эту особенность, нужно придать им свойство грубости, а именно при малых изменениях параметров должна оставаться неизменной качественная структура разбиения фазовой плоскости на траектории. Тем самым выделится класс грубых динамических систем. Грубость динамической системы можно трактовать как устойчивость структуры разбиения ее фазового пространства на траектории по отношению к малым изменениям дифференциальных уравнений (3.1).  [c.44]

Во многих задачах не представляется возможным получить функцию последования, записанную в явном виде (4.3). В таком случае прибегают к параметрической форме этой записи, что часто облегчает не только нахождение функции последования, но и ее исследование. Пусть, например, фазовая плоскость ху рассматриваемой динамической системы разбивается прямой L, определяемой уравнением у = —kx, на две области I н И (рис. 4.3), в каждой из которых уравнения движения (4.2) различны, но линейны. Обозначим через х,, х абсциссы точек пересечения прямой у — —kx с некоторой фазовой траекторией, по которой изображающая точка движется в области I,  [c.73]

В 1 было показано, что динамической системе, поведение которой описывается дифференциальными уравнениями (4.1), можно сопоставить некоторое точечное отображение Т при помощи отрезка без контакта в случае, )1вумерного фазового пространства или при помощи секущей поверхности в случае трехмерного пространства. В этом параграфе мы рассмотрим еще один тип точечного отображения, называемого отображением сдвига. По определению, отображением сдвига динамической системы, описываемой дифференциальными уравнениями вида  [c.87]

Остановимся теперь на вопросе о связи точечного отображения Т, порождаемого фазовыми траекториями на секу-ш,ей поверхности, с отображением сдвига 7 . Отображение Т секушей поверхности определено в пространстве, размерность которого по крайней мере на единицу меньше, чем размерность фазового пространства системы. В отличие от Т, точечное отображение сдвига определено в пространстве той же размерности, что и фазовое пространство. Поэтому характер связи между структурой фазового портрета динамической системы и структурой точечного отображения сдвига Т-с отличается от связи структуры разбиения фазового пространства на траектории со структурой отображения Т секуш,ей поверхности. Вместе с тем отображение сдвига автономной системы или неавтономной системы, правые части дифференциальных уравнений которой являются периодическими функциями времени /, можно интерпретировать как точечное отображение Т, порождаемое решениями дифференциальных уравнений на  [c.88]


Смотреть страницы где упоминается термин Фазовый динамический : [c.256]    [c.204]    [c.271]    [c.278]    [c.9]    [c.13]    [c.48]    [c.67]    [c.69]    [c.70]    [c.76]    [c.79]    [c.81]    [c.83]    [c.87]    [c.89]    [c.89]   
Материаловедение Технология конструкционных материалов Изд2 (2006) -- [ c.127 ]



ПОИСК



Г еометрическая интерпретация динамической системы на фазовой

ГЛАВА v Динамические системы второго порядка Фазовые траектории и интегральные кривые на фазовой плоскости

Динамическая система минимально-фазовая

Динамические системы с цилиндрической фазовой

Динамические фазовые переходы

КРИСТОФЕЛЬ, П. И. КОНСИН. Динамическая теория фазовых переходов в кристаллах типа сегнетовой соли и тиомоО нелинейных оптических материалах с изменяемой дисперсией

Механические характеристики асинхронных электродвигателей в режимах динамического торможения фазового регулирвания

Периодические и устойчивые по Пуассону траектории в фазовых пространствах динамических систем

Понятие о логарифмических амплитудных и фазовых характеристиках динамической системы

Фазовое пространство и фазовые траектории динамических систем

Фазовые переходы в теории элементарных частиц, динамический хаос, конфайнмент

Фазовые портреты динамической системы

Фазовый портрет динамической системы. Понятие устойчивости движения

Характеристика амплитудно-фазова гидропривода динамическая

Характеристика амплитудно-фазова динамических моделей

Что такое динамическая система Понятие фазового , пространства. Фазовый портрет линейного осциллятора



© 2025 Mash-xxl.info Реклама на сайте