Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Долговечность вероятная

Неоднократный статистический анализ показал, что при базе испытания более 5-10 десятикратное увеличение числа циклов не приводит к изменению вычисляемого предела выносливости более чем на 10 %. В частности, у технически чистого титана [92] снижение напряжений с (1,05—1,08) iLl до с , т.е. на 5—8 %, влечет за собой по меньшей мер десятикратное увеличение циклической долговечности. Вероятность определения предела выносливости, вычисленная по данным рис. 92, показала (надрезанные образцы сплава ПТ-ЗВ, плоский изгиб), что уменьшение базы в 10 раз (с Ю до Ю ) может с 33 %-ной вероятностью привести к увеличению определяемого предела выносливости со 140 до 154 МПа, т.е. на 10 %. Это же изменение, но с большей вероятностью может произойти при изменении базы в 20 раз (с 5-10 до 10 цикл). Таким образом, к настоящему времени можно считать доказанным существование физического предела выносливости у титановых сплавов при 20°С в пределах 10 %-ной точности при изменении базы испытаний в 10 раз. Достаточно достоверные результаты определения предела выносливости титановых сплавов получаются при базе испытания 10 цикл и более.  [c.140]


Время эксплуатации, соответствующее некоторой предельной надежности Р, по достижении которой система должна быть снята с эксплуатации, называют ресурсом. Очевидно, ресурс Г может быть определен из условия Р (Т,) = Р (см. рис. 2). Ресурс равен такой нижней границе для долговечности, вероятность превышения которой равна минимальной нормативной величине Р.  [c.166]

Делительные устройства приспособлений 57 Дефекты деталей 4,141, 306, 364 Деформации 19, 20, 120, 194, 206, 210, 411 Динамометр 399 Дисбаланс 405, 409 Дисперсия случайной величины 159 Дисульфид молибдена 20, 431 Диффузия 136, 272 Доверительная вероятность 158 Долговечность вероятная 130. 148  [c.553]

Рнс. 4. График вероятной долговечности  [c.27]

В случае машин напряженного класса, вроде транспортных, задача сложнее. Требования габаритных размеров и массы заставляют повышать расчетные напряжения, вследствие чего вероятность поломок увеличивается. Однако непрерывное совершенствование упрочняющей технологии и уточнение методов расчета позволяют и в данном случае устранить или значительно отодвинуть прочностные лимиты долговечности.  [c.28]

Надежность — это свойство объекта (например, изделия) сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях использования, технического обслуживания и ремонта, хранения и транспортирования (ГОСТ 27.002—83). Надежность включает свойства безотказности, долговечности, ремонтопригодности и сохраняемости. Показателями надежности являются вероятность безотказной работы, средняя наработка до отказа, интенсивность отказов и др.  [c.85]

Надежность и долговечность являются важнейшими показателями качества механизма. Они характеризуются вероятностью безотказной работы с необходимой точностью в течение заданного срока службы в заданных условиях эксплуатации. Надежность обеспечивается следующими показателями деталей механизма прочностью износостойкостью жесткостью нагревостойкостью вибростойкостью.  [c.170]

Надежность отдельного подшипника — вероятность того, что он достигнет или превысит определенную долговечность.  [c.319]

Испытания изделий на безотказность сводятся к контролю вероятности безотказной работы за заданное время или к определению наработки на отказ (средней наработки до первого отказа). Испытания на ремонтопригодность обычно проводятся для Определения среднего времени восстановления или вероятности восстановления работоспособности изделия за заданное время. Испытания на долговечность предназначаются для контроля среднего или гамма-процентного ресурса. Испытания на сохраняемость предусматриваются для контроля вероятности сохранения показателей изделия в течение заданного срока. Часто требуется информация обо всех основных показателях надежности изделия, и проведенные контрольные испытания должны одновременно дать сведения о безотказности, долговечности, сохраняемости, ремонтопригодности и других показателях.  [c.481]


Определением приведенных критериев и их сравнительной оценкой с допускаемыми величинами обеспечивается надежность изделий в заданных условиях эксплуатации в течение гарантированного срока службы. Надежность и долговечность зависят как от качества изготовления изделий, так и от умения (мастерства) использования техники в эксплуатации. В течение срока службы надежность монотонно (по нормальному или другим законам) снижается. Восстановление и обеспечение заданной вероятности безотказной работы достигаются периодическими ремонтами и хорошим уходом за машинами, механизмами, приборами и другими устройствами.  [c.239]

Наиболее подробное изложение теоретических аспектов разрушения, подготовки образцов и оборудования, порядка проведения исследований дается здесь для методик, составляющих группы Усталостные испытания и Испытания на трещиностойкость . Это вызвано почти полным отсутствием в литературе данных об оценке надежности и долговечности на образцах с покрытиями. Следует отметить, что методы усталостных испытаний и на трещиностойкость металлических образцов регламентированы нормативными документами (ГОСТы и РД), поэтому нам представляется целесообразным использование этих документов при подготовке контрольных образцов. Кроме того, при изготовлении образцов с покрытием следует, вероятно, соблюдать принцип покрытие должно наноситься на выбранные поверхности металлических образцов, сделанных строго в соответствии с действующим стандартом. Это позволит однозначно оценить влияние покрытия на конструктивную прочность и обеспечить сопоставимость результатов.  [c.20]

На рис. 56 приведены типичные кривые малоцикловой усталости сплава ОТ4, полученные при пульсирующем растяжении с частотой 2 цикл/мин. На участке I образцы не разрушаются, т.е. разрушение происходит или при статическом нагружении, или после числа циклов, соответствующих участку II. На участке II разрушение происходит вследствие исчерпания пластичности в результате протекающей здесь циклической ползучести. Предельная пластичность при разрушении f на этом участке равна или превышает таковую при статическом растяжении 6,. . Повышение предельной пластичности при разрушении вследствие циклической ползучести связано, вероятно, с меньшей неоднородностью деформации при циклическом нагружении по сравнению со статическим. Для участка III характерно усталостное разрушение, которое может происходить на фоне развитых односторонних деформаций (а и Л/р, — напряжения и соответствующие им долговечности, при которых происходит переход от квазистатического к усталостному разрушению). По виду кривые циклической ползучести при квазистатическом разрушении аналогичны кривым ползучести при статическом нагружении. Как и при статической ползучести, кривые циклической ползучести имеют  [c.96]

Рис. 91. Распределение циклической долговечности и вероятности разрушения Р без учета (кривая 7) и с учетом порога чувствительности /У з (кривая 2) Рис. 91. Распределение <a href="/info/127318">циклической долговечности</a> и <a href="/info/5832">вероятности разрушения</a> Р без учета (кривая 7) и с учетом <a href="/info/98151">порога чувствительности</a> /У з (кривая 2)
Распределения циклической долговечности х = 1дЛ/,-, показанное на рис. 91, свидетельствует о близком к нормальному распределению 1дЛ/,-и о существовании при малых долговечностях "порога чувствительности по циклам" Л/д титана по мере уменьшения вероятности разрушения Я экспериментальные точки отклоняются от прямой и располагаются на некоторой кривой, приближающейся к вертикали. Согласно методике, принятой для определения величины порога чувствительности, можно принять для данного случая N = 2-10 . При числе циклов менее вероятность поломки ничтожно Мала и ее следует считать невозможной. Закон распределения величины = 1д(Л// —Л/ ) описывается нормальной функцией гораздо лучше, чем х = gN .  [c.139]


Благодаря статистическому анализу результатов усталостных испытаний сплавов удается выявить некоторые закономерности усталостных свойств титана, которые не удается раскрыть при обычном определении среднего предела выносливости. Следует отметить, что большой разброс данных при циклических испытаниях сплавов заставляет строить полные вероятностные кривые не только для определения гарантированного предела выносливости металла с заданной надежностью (вероятностью) неразрушения, но даже при выборе сплава, так как по средним значениям предела выносливости (при Р-, = Б0 %) может быть выбран один сплав, а по вероятности неразрушения 99,9 % —другой сплав из-за меньшего разброса данных по его долговечности. При статистическом анализе более точно можно подобрать и математическую форму кривой усталости в координатах а—1дЛ/, что дает более точные сведения о пределе выносливости при большом количестве циклов нагружения. Например, при сравнении крупных поковок из сплавов ПТ-ЗВ и ВТ6 среднее значение предела выносливости у первого оказалось на 20 МПа выше, что находится в пределах разброса данных при построении полных вероятностных диаграмм из этих сплавов выяснилось, что сплав ВТ6 по пределу выносливости с вероятностью неразрушения 99,9 % при Л/= 10 цикл превосходит сплав ПТ-ЗВ более чем на 70 МПа. Статистический анализ позволил определить предел выносливости сплава ВТЗ-1 при если при Л/=10 цикл средние пределы были равны 430, 320, 197 МПа (соответственно для гладких образцов и надрезанных при а. =1,4 и . = 2,36), то при N- °° пределы выносливости оказались равными только 312, 217 и 72 МПа [96].  [c.142]

Интересные особенности влияния структуры на усталостные характеристики титановых сплавов выявлены авторами работы [132, с. 42]. Для сплавов ВТЗ-1 и ВТ8 в различном структурном состоянии проанализирован разброс значений долговечности, при этом установлено, что грубая игольчатая микроструктура способствует большему разбросу данных. Это значит, что сплав с такой структурой имеет более низкий предел выносливости по средним данным и по минимальной вероятности разрушения.  [c.154]

Рис. 109. Зависимость вероятности разрушения Я и суммарной циклической долговечности Sn, от уровня напряжения о, при программном нагружении гладких образцов сплава ВТ6 диаметром 10 мм Рис. 109. Зависимость <a href="/info/5832">вероятности разрушения</a> Я и суммарной <a href="/info/127318">циклической долговечности</a> Sn, от уровня напряжения о, при <a href="/info/56723">программном нагружении</a> гладких образцов сплава ВТ6 диаметром 10 мм
С увеличением длительности действия низкого напряжения суммарная долговечность п] на высоком уровне напряжения уменьшается. Особенно большой эффект наблюдается при малых вероятностях разрушения. Интересно, что для малых вероятностей разрушения при увеличении продолжительности действия низкого напряжения в 16 раз ( 1 Л2 = 1 20 и 1 320) почти во столько же раз уменьшается число периодов нагружения при о . Это значит, что у наиболее "слабых" образцов, у которых уровень нагружения О2 = 330 МПа близок к индивидуальным пределам выносливости, накопление повреждений при программных нагружениях при этих режимах происходит в основном на низких уровнях напряжений. Высокие напряжения, продолжительность действия  [c.174]

Рис. 110. Зависимость вероятности разрушения Ри суммарной циклической долговечности от относительной длительности действия низких напряжений Рис. 110. Зависимость <a href="/info/5832">вероятности разрушения</a> Ри суммарной <a href="/info/127318">циклической долговечности</a> от относительной длительности действия низких напряжений
Проектирование воздушных судов (ВС) гражданской авиации, как и других видов техники, основано на систематизации внешних нагрузок с их последующим использованием для определения ресурса или долговечности тех зон или элементов конструкции, которые наиболее нагружены. По ним может быть установлен минимальный срок эксплуатации или ресурс всей конструкции, начиная с которого весьма вероятно возникновение повреждения и даже разрушение наиболее нагруженных элементов конструкции.  [c.26]

По имевшим место к моменту исследования случаям обнаружения трещин на верхних поясах шпангоута № 18 хвостовых балок вертолетов Ми-6 была выполнена вероятностная оценка величины наработки, до которой появление подобных трещин на других вертолетах маловероятно [17]. Начиная с этой наработки, необходимо было вводить контроль стыка по шпангоуту № 18 в процессе ремонта для выявления в нем трещин. Оценка нижней границы разброса наработок при достижении предельного состояния стыка по шпангоуту № 18 проведена по методике, в которой использованы представления о линейном накоплении усталостных повреждений, логарифмически нормальном законе распределения усталостной долговечности [18], а кинетика развития усталостных трещин рассмотрена как линейная зависимость прироста усталостных трещин за полет по ее длине [19]. В результате было получено, что до наработки 10000 ч вероятность появления указанных трещин не превышает 5 %.  [c.729]

Кривая усталости равной вероятности разрушения — график, характеризующий зависимость между максимальными или амплитудными значениями напряжений цикла и долговечностью образцов, соответствующей заданной вероятности.  [c.13]


Результаты испытаний для каждого из уровней напряжения располагают в вариационные ряды, а основании которых строят семейство кривых распределения долговечности в координатах Р—ЛГ на логарифмически нормальной вероятностной бумаге. Задаваясь значениями вероятности разрушения, на основании кривых распределения долговечности строят семейства кривых усталости равной вероятности.  [c.53]

Построение кривых распределения долговечности (Р — М) производится на вероятностной бумаге, соответствующей логарифмически нормальному закону распределения. По оси абсцисс откладываются значения долговечности образцов N, а по оси ординат — значения вероятности разрушения образцов (накопленные частоты), вычисленные по формулам P=(i—Q )Jn при rt20,  [c.57]

По доверительным интервалам для аист наносят границы доверительной области, в которую с вероятностью Р будет попадать линия, соответствующая теоретической функции распределения долговечностей.  [c.61]

На основании кривых распределения долговечности строят семейство кривых усталости для ряда вероятностей разрушения. Для этого целесообразно использовать вероятности, равные 0,01 0,10 0,30 0,50 0,70 0,90 и 0,99.  [c.62]

По результатам испытаний образцов на шести уровнях напряжений составляем вариационные ряды (табл. 6) и строим кривые распределения долговечности (см. рис. 30). Производя горизонтальные разрезы кривых (см. рис. 30) для уровней вероятности = 0,01 0,10 0,30 0,70 0,90 и 0,99 (1 10 30 70 90 и 99 /о), находим-соответствующие долговечности при заданных значениях напряжений, на основании которых строим семейство кривых усталости по параметру вероятности разрушения (см. рис. 31).  [c.63]

Должны быть еще учтены вид и объем разрушений, т. е. установлено с известной степенью достоверности, подвергаются ли раз-рушению жизненно важные или второстепенные детали и узлы, сохраняется ли ремонтоспособность машин, каковы вероятный объем и стоимость ремонтов С этих позиций долговечность можно определить, как вероятную продолжительность работы машины на регламентированном режиме, при которой возможный выход машин из строя не больше заданного условного предела (например 10%), при сохранении ремонто-  [c.27]

При построении вероятностных моделей отказов (см. например [30]) экспериментальные данные по долговечности элементов представляются эмпирическими функциями распределения (ЭФР) как зависимости вероятности разрушения образцов от времени, числа нагружений и т.д. Приведенные ЭФР являются стуненчатыми функциями, для которых, строго говоря, неприменим традиционный аппарат дифференцирования. Однако, физический смысл эмпирической информации (накопление повреждений, приводящих к разрушению образцов) и схожесть графического представления позволяет сделать вывод, что данные графики можно с уверенностью отнесги к типу "чертова лестница"  [c.136]

В результате расчета на усталость вероятностными методами получается функция распределения долговечности детали, а следовательно, и сроков службы детали, характеризующая связь этих сроков службы с надежностью, т. е. с вероятностью разрушения. Эта функция позволяет определить средние ресурсы (модальный, медианный или средний), Y-процентный ресурс т. е. долговечность, соответствующую вероятности неразруше-ния, равной y %)], разброс долговечности и т. п.  [c.151]

При усталостном, коррозионно-усталостном разрушении оптимальное содержание углерода, обеспечивающее максимальную выносливость стали с сформированным импульсным упрочнением белым слоем, находится в пределах 0,45—0,65 %.Т1дя стали без белого слоя при испытании на коррозионную усталость нет оптимума, а увеличение содержания углерода приводит к монотонному снижению долговечности стали. Импульсное упрочнение эффективно повышает сопротивление усталости и коррозионной усталости стальных образцов с концентраторами напряжений. В условиях усталостного и коррозионно-усталостного разрушения трещины в стальных деталях с белым слоем зарождаются на границе перехода сжимающих остаточных напряжений в растягивающие. При этом уменьшение вероятности возникновения трещин и отслаивания белого слоя связано с перераспределением напряжений в результате пластических сдвигов в зоне повышенной травимости. Эта зона характеризуется меньшей, чем у белого слоя и мартенсита, твердостью и пониженным уровнем сжимающих остаточных напряжений.  [c.119]

По результатам стендовых испытаний в каталоге для подшипника каждого типа, серии и размера указывается его динимичвскля грузоподъемность С, представляющая собой ту нагрузку, при которой с 90%-ной вероятностью этот подшипник сделает миллион оборотов без потери работоспособности. При какой-либо другой нагрузке Р подшипник сможет сделать L миллионов оборотов (Р, выраженное в оборотах, называется долговечностью подшипника). Если т — показатель степени кривой усталости подшипника, то 1. С"" = Еоткуда  [c.344]

Специфика атте<Ьтации надежности изделий. При аттестации качества изделия особенно трудно оценить показатели надежности. Источники информации о надежности (см. гл. 4, п. 5) дают необходимые данные либо с запозданием (из сферы эксплуатации), либо лишь с определенной степенью достоверности (при расчетах или ускоренных испытаниях). Поэтому при аттестации надежности выпускаемого изделия должны быть наряду с показателями, учитывающими фактор времени (ресурс, вероятность безотказной работы, коэффициент долговечности и др.) и такие показатели, которые могут быть достоверно определены непосредственно у готового изделия и характеризовать его надежность. Таким показателем должен быть в первую очередь запас надежности, т. е. отношение предельно допустимого значения выходного параметра к его фактическому значению /С > 1 (см. гл. 4, п. 3). Запас надежности является объективной характеристикой изделия и может быть установлен при его испытании без необходимости дожидаться изменения выходных параметров. Конечно, запас надежности еще не Определяет полностью длительности последующего функционирования изделия, поскольку надо знать и скорость процесса потери работоспособности. Однако скорость процесса может быть регламентирована соответствующими нормативами или определена рас четом и прогнозированием. Подтверждение показателей надежности при испытании изделий является критерием для обоснованности выбора значений запаса надежности по каждому йз выходных параметров.  [c.421]

Проявление влияния рассеивания долговечности подшипников на поток отказов машины № б Балахнинского ЦБК оценивается следующими результатами. Натенатичеокое ожидание наработки на отказ М (i) = 14,6 сут. коэффициент вариации = 1,2, уровень значгаости Р(СО ) - 0,13. Надежность подшипников по вероятности безотказной работы составит  [c.21]

Для получения достоверных сведений по усталостной прочности титановых сплавов конкретной структуры не(обходима количественная оценка разброса результатов циклических испытаний. При этом предел выносливости определяют с заданной вероятностью неразрушения, т.е. оценивают его надежность. Уже первьге статистические обработки результатов усталостных испытаний титановых сплавов показали высокие значения коэффициента вариации условного предела выносливости [96— 98]. Учитывая большой разброс, наиболее правильно для анализа усталостных свойств титановых сплавов применять методы математической статистики и теории вероятности. Для этого строят полные вероятностные диаграммы, например по системе, предложенной Институтом машиностроения АН СССР [99, 100]. Эта система основана ра разделении процесса усталостного разрушения на две стадии до появления макротрещины и развитие трещины до разделения образца на части. При анализе предела выносливости гладких образцов это разделение не имеет принципиального значения, так как долговечность до появления трещины Л/ и общая долговечность до разрушения образца Л/р близки. Часто Jртя построения полных вероятностных диаграмм усталости за основу берут наиболее простой метод, предложенный В. Вейбуллом [ 101 102, с. 58 — 64]. Для построения полной вероятностной кривой необходимо испытать достаточно большие партии образцов (30—70 шт.) на нескольких уровнях амплитуды напряжений, которые должны быть выше предела выносливости (см., например, рис. 92). На каждом из этих уровней по гистограмме определяют вероятность разрушения при данной амплитуде напряжений. Далее ст ят кривую Веллера по средним значениям долговечности. По гистограммам строят кривые равной вероятности в тех же координатах (а — 1дЛ/). Затем строят семейство кривых, определяющих не только зависимость долговечности от амплитуды напряжений, но и вероятности разрушения от заданных амплитуды напряженйй и долговечности. Далее, принимая математическую форму распределения вероятности, на данном уровне напряжений можно строить кривые зависимости либо от амплитуды напряжений при заданной базе испытаний Л/,  [c.141]


На рис. 109 приведена зависимость вероятности разрушения суммарной циклической долговечности 1п1 от уровня напряжения при программном нагружении гПадких образцов сплава ВТ6. Как видно из рисунка, низкие напряжения блока активно участвуют в процессе усталостного разрушения сплава ВТ6, по крайней мере, начиная с ( = = 200 МПа, что составляет примерно 0,5а. 1- В реальных конструкциях  [c.173]

Рис." 111. Зависимость вероятности разрушения Р и суммарной циклической долговечности 11Л5 от относительной длительности действия высоких напряже- Рис." 111. Зависимость <a href="/info/5832">вероятности разрушения</a> Р и суммарной <a href="/info/127318">циклической долговечности</a> 11Л5 от относительной длительности действия высоких напряже-
Коррозионная среда при программном нагружении влияет примерно так же, как и при стационарном. В области малой вероятности разрушения и при стационарном, и при программном нагружении эффект влияния коррозионной среды сильнее, в то время как при больших вероятностях разрушения долговечности в коррозионной среде и на воздухе практически одинаковы. И при стационарном, и при программном нагружении дисперсия логарифма долговечности заметно выше при испытании в коррозионной среде. При испытаниях на воздухе при стационарном нагружении с амплитудой напряжения Ох = 500 МПа дисперсия составила 0,0264, а при программном нагружении 0,0408, в то время как при испытании в 3 %-ном растворе МаС1 соответственно 0,117 и 0,208.  [c.176]

Такое предположение позволяет сделать сопоставление данных работ [61] и [96]. В обеих работах исследовали один и тот же Ti-сплав с параметрами структуры, характеризуемыми крупными а -пла-стинами в первичных (3]5,-зернах размером 0,5-1 мм. В работе [43] при выдержке материала под нагрузкой в течение нескольких минут изменения СРТ по сравнению с х = О не отмечали. В работе [96] при выдержке произошла смена механизма разрушения с вязкого внутризеренного, которому отвечал бороздчатый рельеф излома, на межсубзеренный с фасеточным рельефом излома, что сопровождалось сокращением в 16 раз периода роста трещины. В связи с фактом возрастания скорости роста трещин было подчеркнуто [96] наличие в материале 0,004 % Н2. Это количество Н2 достаточно мало по массе, но в другой работе [81] при длительном статическом нагружении образцов из сплава 0Т4 по схеме Трояно при объемной доле Н2 в 0,003-0,005 % наблюдали их замедленное разрушение и увеличение СРТ при высоком уровне напряжений. Такое разрушение, как говорилось выше, сопровождалось образованием гидридов и развитием трещин по ним. Но в работе [61] снижение долговечности было объяснено диффузией имеющегося в материале Н2 в полосы скольжения. Если это так, то при выдержке данный процесс должен сопровождать и рост трещины, способствуя охрупчиванию материала, однако это в работе [60] не наблюдалось. Поэтому только наличием в сплаве Н2 нельзя объяснить снижение периода зарождения трещины и увеличение СРТ. По всей вероятности, имелась некоторая субструктурная особенность состояния материала по межфазпым границам, которая вызывала рост трещины по ним в течение выдержки под нагрузкой или охрупчивание по плоскостям скольжения в монофазном материале.  [c.368]

При расчете дисков на долговечность исходят из влияния длительного пребывания диска под нагрузкой в течение цикла запуска и остановки двигателя на поведение материала. В области малоцикловой усталости при выдержке материала под нагрузкой термоактивационный процесс пластической деформации и разрушения содействует повышению вероятности завершения медленно текущих процессов повреждения границ зерен и субзерен, связанных с развитием межзеренного скольжения и перемещением потока вакансий. При этом может происходить переход к смешанному внутри-и межзеренному или доминирующему межзерен-ному разрушению (см. главу 8).  [c.545]

Рис. 36. Зазисидмость вероятности разрушения от долговечности резьбовых со-единений при различной амплитуде переменных напряжений а резьба накатана, г=0,18 мм б — то же, г=0,3 мм в — то же, г=0,б мм-г —резьба нарезана, г—0,63 мм / —/2.—испытания при различных амплитудных значениях напряжений Рис. 36. Зазисидмость <a href="/info/5832">вероятности разрушения</a> от долговечности резьбовых со-единений при различной <a href="/info/29665">амплитуде переменных напряжений</a> а <a href="/info/212699">резьба накатана</a>, г=0,18 мм б — то же, г=0,3 мм в — то же, г=0,б мм-г —резьба нарезана, г—0,63 мм / —/2.—испытания при различных амплитудных значениях напряжений

Смотреть страницы где упоминается термин Долговечность вероятная : [c.166]    [c.76]    [c.106]    [c.27]    [c.44]    [c.173]    [c.536]    [c.36]    [c.49]    [c.57]   
Основы технологии автостроения и ремонт автомобилей (1976) -- [ c.130 , c.148 ]



ПОИСК



Вероятности. Стр Вероятность

Вероятность

Долговечность

Сплавы — Вероятность разрушения Зависимость от долговечности



© 2025 Mash-xxl.info Реклама на сайте