Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Подшипники Кинематика

Знание кинематики подшипников важно для изучения их динамики (силовых воздействий на тела качания), для расчета на долговечность (определение числа циклов нагружений) и, наконец, для изучения работы сепаратора.  [c.349]

Однако в целом ряде случаев приходится сознательно проектировать и изготавливать статически неопределимые механизмы с избыточными связями для обеспечения нужной прочности и жесткости системы, особенно при передаче больших сил. Следует различать избыточные, или добавочные, связи в кинематических парах и в кинематических цепях механизма. Так, например, (рис. 2.13) коленчатый вал четырехцилиндрового двигателя образует с подшипником А одноподвижную вращательную пару, что вполне достаточно с точки зрения кинематики данного механизма с одной степенью свободы (VT= 1). Однако, учитывая большую длину вала и значительные силы, нагружающие коленчатый вал, приходится добавлять еще два подшипника А и А", иначе система будет неработоспособной из-за недостаточной прочности и жесткости. Если эти вращательные пары двухподвижные цилиндрические, то  [c.34]


КИНЕМАТИКА И ДИНАМИКА ПОДШИПНИКОВ  [c.447]

В некоторых случаях по конструктивным соображениям между звеньями, образующими кинематическую пару, вводят промежуточные элементы, например ролики или шарики в подшипниках. Эти сложные соединения, сохраняя относительное движение звеньев, с точки зрения кинематики эквивалентны обычным кинематическим парам. Такие сложные совокупности пар называют кинематическими соединениями, они обеспечивают высокую стойкость при больших скоростях вследствие распределения нагрузки по многочисленным точкам касания промежуточных элементов.  [c.19]

Далее, в процессе обработки материалов в большинстве случаев приходилось отказываться от точного изображения отдельных деталей механизмов, как это принято в чертежах конструкций, так как это потребовало бы введения в чертеж ряда дополнительных частностей, имеющих важное конструктивное значение, но" затемняющих основное восприятие той формы движения, которая данным механизмом может быть воспроизведена. Особенно это относится к деталям рам, подшипников, стоек, к упорным кольцам, втулкам и т. д. Более того, некоторые условности, применяемые в современных чертежах конструкций в части разрезов, проекций, штриховки, изображения резьб, пунктиров и т. д., не всегда принимались во внимание, так как строгое использование нанесло бы ущерб ясности восприятия читателями кинематики и структуры механизмов.  [c.9]

Лаборатория деталей машин создана в пятидесятых годах. Несмотря на сравнительно короткий срок существования, эта лаборатория выполнила значительное число экспериментальных и теоретических работ по заданиям промышленности. Здесь следует отметить исследования работы зубчатых и червячных передач, работы подшипников в условиях кача-тельного движения, кинематики и динамики универсального шарнира и др. Длительное время ведутся экспериментально-теоретические исследования упругих соединительных муфт различных конструкций, а также изучение вопросов механики работы бурового инструмента.  [c.43]

КИНЕМАТИКА И РАСПРЕДЕЛЕНИЕ НАГРУЗКИ В ЭЛЕМЕНТАХ подшипников КАЧЕНИЯ  [c.572]

Кинематика игольчатого подшипника  [c.573]

Кинематика подшипников качения  [c.438]

Тип подшипника определяет кинематику и потери на трение. Наиболее быстроходными являются прецизионные радиальные и радиально-упорные шарикоподшипники легких и сверхлегких серий. Подшипники тяжелых серий менее быстроходны. Для нормальных частот вращения применяют в основном подшипники класса точности О со стальными штампованными сепараторами.  [c.137]


К недостаткам подшипников качения следует отнести отсутствие разъемных конструкций, сравнительно большие радиальные габариты, ограниченную быстроходность, связанную с кинематикой и динамикой тел качения (центробежные силы, гироскопические моменты и пр.), низкую" работоспособность при вибрационных  [c.348]

Кинематика подшипника. Шарик в подшипнике совершает планетарное движение. На рис. 16.16 изображен план скоростей для случая вращения внутреннего кольца. Здесь  [c.353]

Широкое распространение имеют также крестово-шарнирные муфты (шарнир Гука). В отличие от муфт, компенсирующих ошибки монтажа, крестово-шарнирные муфты используют для соединения валов с большой угловой несоосностью (до 35...40°), предусмотренной конструкцией машины. Крестово-шарнирные муфты обладают своеобразной кинематикой, которую изучают в курсе теории механизмов и машин. Методика расчета прочности этих муфт сводится в основном к частным предложениям методик расчета валов, подшипников и кривых брусьев.  [c.369]

При вращении деталей подшипников качения в местах контактов всегда возникает трение. Анализ кинематики и динамики подшипников качения показывает, что в подшипниках существует как трение качения, так и трение скольжения. Каждая составляющая общих потерь на трение сложным образом зависит от условий эксплуатации (частоты вращения, нагрузки, температурного режима и смазки) и конструктивного исполнения, определяющего контактные взаимодействия. Поэтому точный расчет составляющих можно выполнить при условии накопления достаточного экспериментального материала.  [c.55]

Реверсирование применяется на том же оборудовании, что и обычное шлифование, при тех же режимах и условиях обработки. Оно не требует изменений в кинематике и компоновке станков. Изменение направления вращения бесконечных лент может осуществляться вручную переворотом ленты на 180° или автоматически за счет переключения фаз тока электропривода ленты. Реверсирование направления вращения ленты за счет переключения фаз электротока способствует увеличению долговечности подшипников лентопротяжных механизмов и шпинде-  [c.206]

Такую же частоту имеет неуравновешенность сепаратора. Малые зазоры могут быть причиной залегания шариков и нарушения кинематики вращения подшипника, что также вызывает повышенный шум.  [c.149]

Методика изучения курса учитывает разницу в распределении учебных часов между лекциями и упражнениями. В связи с этим некоторые темы курса на упражнениях не рассматриваются, а целиком изучаются на лекциях с подробным решением необходимых задач. Например, в разделе Статика не выносится для изучения на занятиях тема Определение положения центра тяжести твердого тела в разделе Кинематика — темы Сферическое движение твердого тела , Сложное движение твердого тела в разделе Динамика — темы Колебательное движение материальной точки , Определение динамических реакций подшипников при вращении твердого тела относительно неподвижной оси , Составление дифференциальных уравнений движения системы материальных точек с помощью уравнений Лагранжа второго рода .  [c.12]

Для определения размеров подшипника поступают следующим образом а) исходя из действующих радиальных и осевых нагрузок, учитывая кинематику и динамику работы подшипника, вычисляют приведенную нагрузку б) учитывая приведенную нагрузку, число оборотов подшипника и требуемый срок службы, определяют коэффициент работоспособности в) по найденному коэффициенту работоспособности выбирают определенный подшипник и находят его габаритные размеры.  [c.374]

К недостаткам подшипников качения следует отнести ограниченную быстроходность, связанную с кинематикой и динамикой тел качения (центробежные силы, гироскопические моменты и пр.).  [c.329]

КИНЕМАТИКА ПОДШИПНИКОВ КАЧЕНИЯ  [c.557]

Если тот же вал опереть на три подшипника (рис. 2.7. б), то третья опора не изменит кинематики движения вала, так как она является пассивной связью, но существенно изменит условия работы вала. Более высокие требования предъявляются к точности изготовления, так как в этой системе передавае.мые силы зависят от деформации звеньев из-за возможного несовпадения осей вала и подшипников вал вынужден изгибаться в подшипниках появятся дополнительные силы от изгиба вала, трение в них увеличится и снизится кпд механизма.  [c.23]


Круговая вибрация. При круговой вибрации платформа по-прежнему движется поступательно, но кинематика ее движения такова, что любая точка, принадлежащая платформе, описывает, например, в горизонтальной плоскости, перпендикулярной оси (рис. VIII.9), окружность. Рассматривая движение гироскопа при круговой вибрации, как и в случае линейной вибрации, обратимся к определению величины и направления динамической реакции М, возникающей в подшипниках оси у наружной рамки карданова подвеса.  [c.231]

В учебном пособии изложены основы теории, расчета и конструирования точных механизмов. При этом рассмотрены структура, кинематика и динамика механизмов основы взаимозаменяемости, допуски и посадки, ошибки механизмов конструкция и расчет зубчатых, червячных, винтовых и фрикционных передач, планетарных, дифференциальных, волновых, кулачковых, рычажных, мальтийских, храповых, счетно-решающих и др. механизмов конструкция и расчет узлов и деталей механизмов и приборов — соединений, валов, осей, подшипников, нуфт, направляющих, корпусов, упругих и чувствительных элементов, отчетных устройств, успокоителей и регуляторов скорости.  [c.2]

К середине XIX в. в России выросла плеяда талантливых ученых, заложивших основы современной теории механизмов и машин. Основателем русской школы этой науки был великий математик акад. П. Л. Чебышев (1821—1894 гг.), которому принадлежит ряд оригинальных исследований, посвяш,енных синтезу механизмов, теории регуляторов и зубчатых зацеплений, структуре плоских механизмов. Он создал схемы свыше 40 различных механизмов и большое количество их модификаций. Акад. И. А. Вышнеградский явился основателем теории автоматического регулирования его работы в этой области нашли достойного продолжателя в лице выдаюш,егося русского ученого проф. Н. Е. Жуковского, а также словацкого инженера А. Сто-долы и английского физика Д. Максвелла. Н. Е. Жуковскому — отцу русской авиации — принадлежит также ряд работ, посвященных решению задачи динамики машин (теорема о жестком рычаге), исследованию распределения давления между витками резьбы винта и гайки, трения смазочного слоя между шипом и подшипником, выполненных им в соавторстве с акад. С. А. Чаплыгиным и др. Глубокие исследования в области теории смазочного слоя, а также по ременным передачам выполнены почетным академиком Н. П. Петровым. В 1886 г. проф. П. К. Худяков заложил научные основы курса деталей машин. Ученик Н. А. Вышнеградского проф. В. Л. Кирпичев известен как автор графических методов исследований статики и кинематики механизмов. Он первым начал читать (в Петербургском технологическом институте) курс деталей машин как самостоятельную дисциплину и издал в 1898 г. первый учебник под тем же названием, В его популярной до сих пор книге Беседы о механике решены задачи равновесия сил, действующих в стержневых механизмах, динамики машин и др. Выдающийся советский ученый проф. Н. И. Мерцалов дал новые оригинальные решения задач кинематики и динамики механизмов. В 1914 г. он написал труд Динамика механизмов , который явился первым систематическим курсом в этой области. Н. И. Мерцалов первым начал исследовать пространственные механизмы. Акад. В. П. Горячкин провел фундаментальные исследования в области теории сельскохозяйственных машин.  [c.7]

Стабилизация гироплатформы достигается не только кинематикой карданова подвеса с его тремя взаимопер-пендикулярными осями, но и системой специальных устройств, в которую кроме установленных на платформе гироблоков, входят датчики углов поворота и разгрузочные двигатели. Датчики устанавливаются на всех трех осях карданова подвеса и замеряют углы поворота этих осей в подшипниках разгрузочные двигатели через редукторы создают моменты на тех же осях. На схеме (см. рис. 2.4) в целях наглядности изображения показан только один разгрузочный двигатель /, воздействующий на траверсу 2 карданова подвеса и один датчик угла 3.  [c.39]

Трение покоя резко снижает чувствительность тонких приборов, не дает стрелкам, маятникам и другим подвижным элементам легко поворачиваться в подшипниках. Чтобы избежать этого, обычно прибегают к такому приему подшипник заставляют вибрировать, так что его элементы все время совершают осциллирующие движения друг относительно друга. В качестве источника вибраций используют электромотор. При этом кинематика прибора существенно усложняется, а вес увеличивается. Американские изобретатели Джон Броз и Вильям Лаубендорфер разработали конструкцию подшипника, в котором трение также уничтожается вибра-  [c.47]

Максимальное использование возможностей современного режущего инструмента. Повышение мощности и быстроходности зуборезных станков легко может быть осуществлено изменением кинематики существующего привода, тем более что зуборезные станки имеют низкие скорости шпинделя. Одновременно с повышением мощности и быстроходности оказывается необходимой модернизация шпиндельного узла. Подшипники шпинделя и дополнительной опоры оправки заменяют под иипни-ками качения. Этим достигается повы-шение жесткости и долговечности подшипников и обеспечивается возможность работы при более высоких режимах.  [c.633]

Детали подшипников качения образуют подвижные под нагрузкой сопряжения, взаимные перемещения сопряженных точек и поверхностей контакта которых обусловлены главным об1разом кинематикой подшипника и в меньшей степени деформациями деталей.  [c.162]

Общие методы преобразования механизмов. Получить новые механизмы можно посре.дством преобразования уже существую-щнх. Пути к этому следующие 1) конструктивный, без изменения структуры и кинематики, 2) кинематический, без изменения структуры, 3) структурный. Мы не будем здесь разбирать конструкцию звеньев, но лишь конструктивное преобразование пар. Как известно, вращательная пара образуется двумя цилиндрическими поверхностями одинакового диаметра, причём на одном звене эта поверхность выпукла, например, на валу шип, а на другом звене — вогнута, например, на опоре подшипник, но можно выпуклый цилиндр закрепить, а на подвижном звене сделать втулку, которая надевалась бы на этот неподвижный цилиндр. Относительное движение звеньев от этого не изменится, пара останется вращательной, а потому при прочих равных условиях структура и кинематика механизма останутся прежними.  [c.82]


Кинематика гибкого подшипника. Для упрощения расчетной схемы рассматриваем передачу с невращающимся гибким колесом. В этом случае наружное кольцо подщипника также не вращается. Кроме того, полагаем, что радиальный зазор в подшипнике равен нулю, силы прижатия шариков к кольцам достаточны для того, чтобы шарики перемещались без проскальзывания, а зазоры в гнездах сепаратора достаточны для того, чтобы сепаратор не препятствовал свободному перемещению шариков.  [c.100]

Все изложенные выше варианты кинематики гибкого подшипника рассмотрены при условии, что зазор в гнездах сепаратора a=Wo. Чтобы определить влияние размера зазора, примем, например, o=wJ2. Обратимся вначале к идеализированной схеме (см. рис. 6.13). Используя вышеизложеннуюметодику, найдем, что при o < свободное качение шариков по всей окружности становится невозможным. Например, при начальном положении шарика А у правой перемычки появляется скольжение на всем участке АЕ, на участке Е В скольжения нет, на участке В С есть скольжение, на участке С А скольжения нет. На правой половине подшипника движение шариков такое же, как и на левой. Свободное качение шариков наблюдается только на половине окружности. При учете радиальных зазоров в подшипнике по схеме рис. 6.15 (в начальном положении шарики А и А смещены к правой перемычке) найдем, что качение шариков сопровождается скольжением на четырех участках АЕ, В С, А Е, BQ.  [c.104]

Задние поверхности сверла представляют собой части поверхностей двух конусов со смещенными вершинами А я В относительно осей XX и ZZ. Относительно оси XX вершины А я В смещены на величину Д] = 0,Ш, а относительно оси ZZ — на величину Дг = 1,16D. Кинематика станков, на которых затачивают спиральные сверла, обеспечивает получение смещенных задних конических поверхностей сверла (рис. 159). Сверло 1, закрепленное в державке 2, совершает колебательные движения вокруг оси АА. Для этой цели поддержка снабжена цапфой 3, поворачивающейся в подшипнике 4. Ось АА совпадает с осью конуса, образующего заднюю поверхность. В процессе заточки поддерж ка вращается вокруг оси АА, а сверло одновременно подается вдоль своей оси к шлифовальному кругу и совершает поступательные движения вдоль торцовой поверхности круга от периферии к центру и обратно. После заточки одной режущей кромки а сверло поворачивается вокруг своей оси на 180° для заточки второй режущей кромки Ь.  [c.174]


Смотреть страницы где упоминается термин Подшипники Кинематика : [c.20]    [c.349]    [c.333]    [c.227]    [c.377]    [c.377]    [c.16]    [c.20]    [c.20]    [c.227]   
Детали машин Издание 3 (1974) -- [ c.507 ]

Машиностроение Энциклопедический справочник Раздел 1 Том 2 (1948) -- [ c.572 ]



ПОИСК



Кинематика

Кинематика и динамика подшипников

Кинематика подшипников качения



© 2025 Mash-xxl.info Реклама на сайте