Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Отжиг матрицы температура

Для снижения твердости по всему сечению отливки и получения ферритной структуры матрицы производят вторую стадию отжига при температуре 700,..720°С. Переход с температуры 850... 980 °С до 720 °С желательно проводить медленно. Это позволяет получить больше феррита и придает большую пластичность отливке. Окончательное охлаждение отливок в интервале температур  [c.82]

Заливка расплава чугуна с 3,5% С и 2% Si в металлическую форму и последующее приложение механического давления до 50—60 MH/м приводят к тому, что более 70% включений графита при кристаллизации приобретают округлую форму, а 30% сохраняют прежнюю пластинчатую форму [49]. При давлении 150 МН/м графитизация чугуна почти полностью прекращается, отливки имеют белый излом. При атмосферном же давлении у чугуна указанного состава графит пластинчатый, при литье в кокиль — междендритный, при литье в песчаную форму — неориентированный. Кратковременный отжиг при температуре 900—950°С закристаллизованных под давлением образцов чугуна приводит к феррит-ной структуре металлической матрицы и округлой форме графита.  [c.37]


В конце пути первично выбитого атома создается лавина смещений и возникает некоторая область с высокой концентрацией дефектов. Эта область называется зоной или пиком смещения и имеет размеры порядка 20—100 А. В момент выделения энергии вещество в зоне расплавляется, часть атомов покидает зону. Через 10 ° с энергия из зоны отводится в окружающее пространство и атомы зоны конденсируются, повторяя решетку окружающей матрицы. При этом большинство возникших пар Френкеля рекомбинирует, однако зона все же оказывается насыщенной точечными дефектами. В дальнейшем концентрация дефектов в зоне понижается в результате теплового отжига. Скорость отжига определяется температурой образца.  [c.89]

Для этой цели надо проводить отжиг при температуре 95— 100° С, стабилизация размеров достигается в течение 8—10 ч. Возможность повышения точности матриц проверяли экспериментальным исследованием на партии матриц в количестве 50 шт. с температурой отжига 100° С и выдержкой 8 ч. В результате измерений матриц было получено, что бог = 28,2 мкм измерения аналогичных матриц без стабилизации показали, что 6(т = 34,5 мкм. Таким образом, имеет место повышение точности изготовления матриц.  [c.231]

Предотвращение рекомбинации. Существует несколько возможностей избежать рекомбинации фрагментов. Во-первых, если один из фрагментов представляет собой небольшой том, способный легко диффундировать в матрице даже без избытка энергии, то возможен его выход из матричной клетки еще до рекомбинации. Идеальным в этом смысле является атом водорода, и поэтому фотолиз водородсодержащих молекул обычно приводит к высокому выходу фрагментов, образующихся путем отрыва этого атома. Атомы элементов второго периода (например, лития, углерода, азота, кислорода и фтора) также могут диффундировать из клетки, хотя для диффузии таких,более тяжелых атомов в некоторых случаях нужно поддерживать температуру в интервале отжига матрицы.  [c.78]

Перед окончательной механической обработкой матрицы отжигают при температуре нагрева до 750—760° С.  [c.209]

Температуру полного исчезновения деформированной матрицы при данном времени отжига называют температурой конца рекристаллизации. Экспериментально ее определяют с помощью световой микроскопии по исчезновению сильнее травящихся остатков деформированной матрицы и рентгенографически — по исчезновению на рентгенограмме размытых дебаевских колец. Кроме того, по рентгенограмме можно подсчитать число пятен — рефлексов от рекристаллизованных зерен. Максимальное число таких рефлексов соответствует концу первичной рекристаллизации, так как начинающаяся вслед за ней собирательная рекристаллизация уменьшает число рекристаллизованных зерен.  [c.65]


По данным [134] укрупнение частиц нитридов, боридов, оксидов в матрице молибдена определяли качественно по изменению микроструктуры и твердости после отжига при температуре до 2200 °С.  [c.88]

Скопления карбидов и б-феррита в белой аустенитной матрице. Карбиды черные, тогда как б-феррит слегка окрашен. Сталь при комнатной температуре и при равновесных условиях содержит большое количество богатой хромом а-фазы. После отжига при температуре 1175° С, которая выше максимальной температуры существования а-фазы, эта фаза распадается на аустенит и богатые хромом карбиды. Одновременно образуется довольно большое количество б-феррита. После охлаждения с достаточной скоростью сложная структура, состоящая из б-феррита, аустенита и карбидов, делается устойчивой вплоть до комнатной температуры (ср. с микрофотографиями 226/1 и 2).  [c.111]

Неполный отжиг отличается от полного тем, что сталь нагревают до более низкой температуры (немного выше точки Ас ). При неполном отжиге доэвтектоидной стали происходит частичная перекристаллизация стали, а именно лишь переход перлита в аустенит. Избыточный феррит лишь частично превращается в аустенит, поэтому значительная его часть не подвергается перекристаллизации Для доэвтектоидной стали неполный отжиг применяется лишь тогда, когда отсутствует перегрев, ферритная полосчатость, а требуется только снижение твердости. Заэвтектоидные стали подвергают только неполному отжигу, В этих сталях нагрев несколько выше точки Ас, (обычно на 10—30 °С) вызывает практически полную перекристаллизацию металлической матрицы.  [c.196]

Отжиг при 723 К привел к некоторому возврату в структуре. При этом размер зерен стал равным 0,1 мкм, а их границы стали более выраженными. Микротвердость, соответствующая данному состоянию, слегка уменьшилась по сравнению с состоянием сразу после ИПД. При 823 К имела место рекристаллизация, приведшая к формированию хорошо различимых зерен диаметром 0,2 мкм и небольшого количества (0,5 %) мелких (менее 0,05 мкм) окисных частиц. Микротвердость уменьшилась более заметно. При 873 К наблюдали очень сильные изменения. Произошло формирование оксида FeO, объемная доля которого достигла 18% (рис. 3.136). Выделения появились главным образом на границах зерен матрицы. Одновременно параметр решетки уменьшился, а микротвердость увеличилась до значений выше, чем для материала сразу после ИПД. При более высоких температурах наблюдался рост зерен матрицы и частиц окислов вместе с возрастающим уменьшением микротвердости.  [c.140]

Другим возможным путем предотвращения взаимодействия является создание барьерных слоев, т. е. покрытий на волокна. В качестве такого барьерного покрытия, обладающего химической инертностью по отношению к никелевой матрице, было использовано покрытие толщиной 5—6 мкм из нитрида титана, которое наносилось на вольфрамовые волокна путем восстановления тетрахлорида титана водородом в присутствии азота [7 ]. Эффективность покрытия нитридом титана вольфрамовых волокон проверяли на образцах композиционного материала, состоящего из матричного никелевого сплава, армированного вольфрамовыми волокнами с тонким слоем покрытия нитридом титана. После отжига образцов при температурах 1100—1200° С с выдержкой 1, 10 и 100 ч из композиций вытравливалась вольфрамовая проволока путем растворения матрицы. Предел прочности извлеченных волокон с покрытиями оказался выше предела прочности таких же волокон без покрытия. Это объясняется тем, что волокна без покрытия при изготовлении композиций, растворяясь в матрице при нагреве, уменьшают эффективный диаметр. Кроме того, покрытия залечивают некоторые поверхностные дефекты волокон.  [c.31]

Взаимодействие волокон углерода с твердым алюминием исследовали в работе [158], где было показано, что термическая обработка в вакууме при 500° С в течение более 150 ч не изменяет прочности волокон. После отжигов при 600° С в течение 24 ч наблюдается заметное падение средней прочности до 180 кгс/мм . Рентгеновским методом установлено, что в этом случае количество карбидной фазы в материале увеличивается. Существенно, что метод получения композиций оказывает заметное влияние на характер взаимодействия ири последующих нагревах. Так, например, при получении композиций с изломом третьего типа методом пропитки под давлением углеродное волокно интенсивно взаимодействует с матрицей уже при температурах 100° С и разупрочняется на 30—40% после отжига в течение 5—10 ч при этой температуре.  [c.87]


Однако следует иметь в виду, что термическая обработка при температурах, превышающих допустимые, может привести к образованию новых фаз на границе раздела волокна с матрицей. Например, отжиг углеалюминия при температурах выше 400° С может привести к резкому снижению коррозионной стойкости в результате образования неустойчивого карбида алюминия.  [c.227]

На обработку давлением поступает штабик после сварки в атмосфере водорода при 2900-3000 °С, имеющий плотность 17,5- 18,5 г/см , квадратное сечение со стороной 10-15 мм и число зерен на 1 мм 800-2000 (ВЧ), 5000- 18000 (ВТ-7 - ВТ-15), 12000- 20000 (ВА, ВИ). В ротационной ковочной машине (см. рис. 47) нагретый до 1450 - 1500 С штабик штампами ( плашками ) обжимают в пруток диаметром 7 мм. Пруток отжигают при 2200 °С (выше температуры рекристаллизации вольфрама) и проводят вторую, а затем и третью ковку пруток, нагретый до 1400 °С, обжимают до диаметра 4,5 мм, затем нагревают до 1250 - 1300 °С и обжимают до диаметра 2,75 мм. Ротационную ковку прутков можно заменить гидроэкструзией (рис. 63), при которой на заготовку действует давление жидкости, одновременно создающей между заготовкой и матрицей пресс-формы пленку, обеспечивающую смазку контактирующих поверхностей. При температуре заготовки 200 - 250 °С и давлении жидкости 1000 -1200 МПа получаемые прутки ВА более прочны, чем ротационно-кованые.  [c.201]

Из предыдущего раздела следует, что исходные усы необходимо соответствующим образом очистить перед тем, как использовать в качестве высокотемпературного упрочнргтеля. Теперь нужно рассмотреть еще два вопроса во-первых, совместимость очищенных усов с матрицей, например никелевой, и, во-вторых, эффективность связи между усами и матрицей. Эти вопросы можно изучать на усах с тонким слоем напыленного никеля (толщиной примерно 0,05 мкм). Когда усы с никелевым покрытием отжигают при температурах выше 1073 К, сплошной слой никеля разбивается на ряд сферических частиц, что позволяет непосредственно исследовать поверхность раздела никель — сапфир в электронном микроскопе. Этот способ эффективен в отношении проверки совместимости и исследования процесса образования связи ои будет подробнее рассмотрен в последующих разделах.  [c.411]

Для получения биметаллических труб употребляются стальные шашки диаметром от 63 до 146 мм и длиной от 170 до 220 мм. Борты шашек с одного конца, прилегающего к пресс-матрице, закругляются. Толщина плакирующего слоя составляет 10% от толщины стенки для торговых сортов и 15 — 300, о для специальных. Трубы изготовляются внешним диаметром от 6 до 60 мм, толщиной стенки 1 — 5 мм. Температура прессовки 800 — 850° С. При последующем холодном волочении трубы периодически отжигаются при температуре 750° С в продолжение 8—9 час. без доступа воздуха. Трубы поставляются мягкими. Трубы с одной внутренней плакировкой имеют с/, = = 27 кг1мм a = 30% и = 12 kz mm ) трубы с двухсторонней плакировкой — o , = 30— 32 KZ MM 8 = 45 — 550/0 и = 22—26 кг/мм-.  [c.238]

При использовании метода матричной изоляции необходимо, чтобы во время регистрации спектров не происходило каких-либо изменений, т.е. матрица должна оставаться жесткой и препятствовать диффузии замороженных частиц. Простейшее эмпирическое правило состоит в том, что матрицу можно считать жесткой при температурах, не превышающих 30% температуры плавления. При этих услои -ях не наблюдаются перестройка матрицы и диффузия изолированных частиц. В интервале температур, составляющих 30 - 50% температуры плавления, может происходить процесс отжига матрицы. Фактически он заключается в перестройке матрищл на атомном уровне в направлении наиболее стабильной кристаллической структуры. Так, при этих температурах начинается рост кристаллических зерен, а вокруг крупных изолированных молекул происходят локальные изменения  [c.23]

Некоторые относящ 1еся к этому вопросу данные для типичных матричных материалов приведены в табл. 2.2. Здесь указаны температуры, при которых, как полагают, начинается отжиг матрицы и диффузия (0,3 и 0,5 7 , , соответственно), а также температуры, при которых давление пара матрицы достигает, значений 10 и 10 з мм рт. ст. Давление 10 мм рт. ст. можно поддерживать длительное время (несколько часов), а давление 10 мм рт. ст. - лишь несколько секунд. Отсюда ясно, что в процессе диффузии необходим тщательный контроль температуры, чтобы избежать исп ния матрицы.  [c.24]

Таким образом, отжиг матрицы и диффузия являются важными экспериментальными приемами для спектроскопического исследования матричной И30ЛЯЩ1И. Так как различные частицы исчезают или вновь образуются при разных температурах, удается не только отличать небольшие подвижные частицы от более крупных по их поведе-  [c.27]

Контролируемые отжиг матрицы и диффузия имеют очень большое значение для анализа экспериментальных результатов. Поэтому возможность изменять температуру матрицы является важнейшей характеристикой эксперимента и, вероятно, основным преимуществом новейших криостатов с микрокриогенными системами. В ранних исследованиях по матричной изоляции в качестве хладагентов использовали жидкий гелий или жидкий водород в этом случае без их удаления из криостата невозможно поднять температуру намного выше соответствующих точек кипения. После удаления хладагента температура быстро возрастает и единственным способом охлаждения служит новое переливание хладагента, когда температура сразу падает соответственно до 4 или 20 К. Микрокриогенная установка позволяет регулировать не только температуру матрицы, но и скорость ее измег нения. Степень отвода тепла можно сделать большей, равной или меньшей притоку тепла к матрице, что и создает возможность постоянной регулировки температуры. Таким путем осуществляют намного более тщательное изучение отжига и диффузии в матрице.  [c.28]

Началом диффузии атомов щелочных металлов в матрице легко управлять путем изменения температуры. Сначала регистрируют спектр осажденной матрицы при низкой температуре, исключающей всякую диффузию. Тогда последующие изменения в спектре, наблюдаемые при повышении температуры, могут быть приписаны реакциям, протекающим при отжиге матрицы за счет диффузии атомов. Однако фото-литически полученные атомы имеют достаточную кинетическую энергию и диффундируют в матрице немедленно после образования независимо от температуры.  [c.83]


Сплавы с церием системы СеСо5 х(Си, Ре) также обнаруживают эффект дисперсионного твердения. Изучение структуры сплава СеСоз,бРео,5Си показывает, что после выплавки при температуре 1120°С (температура плавления 1100°С) образцы сплава двухфазны в матрице размещены игольчатые выделения второй фазы, обогащенной Со и Ре и обедненной Си. После отжига при температуре 1000°С и старения при 400°С наблюдаются мелкодисперсные выделения фазы СегСо по границам зерен. Старение при 400°С вызывает укрупнение частиц второй фазы и рост Нсм- Продолжение старения приводит к дальнейшему укрупнению частиц выделений и последующему уменьшению Н м [2-99].  [c.98]

Перед последующей вытяжкой заготовки необходимо подвергать промежуточному отжигу при температуре 260—350 С с выдержкой около 1 ч. В процессе вытяжки кромки матрицы следует с.мазывать жаростойкой смазкой, составы которой имеются в справочной литературе [7].  [c.239]

Шаровые твэлы первой загрузки реактора AVR имели наружный диаметр 60 мм. Они представляли собой пустотелые графитовые сферы с резьбовой пробкой, внутренняя полость сфер диаметром 40 мм была заполнена смесью микротвэлов и матричного графита со связующим веществом. Первая загрузка шаровых твэлов в количестве 100 тыс. штук была разработана и изготовлена в Ок-Ридже (США). Полые сферы изготавливались из графитовых блоков повышенной плотности, из тех же заготовок вытачивались уплотняющие пробки. Микротвэлы размещались на внутренней поверхности полой сферы, после чего она заполнялась смесью графитовой пыли с каменноугольной смолой. После заворачивания пробки и ее уплотнения проводился низкотемпературный отжиг (до 1500° С, при таких температурах графитизация матрицы сердечника не происходит). Поскольку сложность и, следовательно, стоимость изготовления подобных сборных твэлов очень высока, вторая загрузка реактора была выполнена из прессованных твэлов того же наружного диаметра 60 мм.  [c.26]

Чем крупнее размер зерна матрицы, полученной к концу перви ной рекристаллизации, тем меньше суммарная поверхность грани тем больше плотность дисперсных фаз по границам зерен и, слеД вательно, тем сильнее торможение миграции границ этими фазам С началом растворения дисперсных фаз эффект торможенр ослабевает и тем сильнее, чем выше температура отжига. Создаю ся условия для роста зерен.  [c.402]

Характеристики композитов, подвергнутых отжигу большей продолжительности и при более низких температурах, а также композитов с более прочной матрицей Ti75A (предел текучести при комнатной температуре 56 кГ/мм ) приведены на рис. 11. Прочность композита отнесена к прочности неотожженных образцов и представлена в зависимости от толщины слоя диборида титана, рассчитанной на основе кинетических данных, приведенных в гл. 3. Точки на рис. И получены усреднением результатов до четырех измерений (в основном двух-трех). Хотя температура и продолжительность отжига образцов изменялись в широ ких пределах, различие в поведении образцов не наблюдается.  [c.159]

Излом образца, испытанного на поперечное растяжение при 1477 К после 100-часового отжига при той же температуре, показан на рис. 17, а. Предварительный отжиг вызывает диффузию вольфрама из проволоки в матрицу и на поверхность раздела, что упрочняет их. Поэтому деформация разрушения матрицы уменьшается, трещина не распространяется по поверхности раздела, и в результате прочность композита при 1477 К становится больше. Дальнейшее повышение прочности композита, по-видпмому, ограничено расщеплением проволоки ил.и разрушением по поверх ности раздела, обусловленным пористостью диффузионного происхождения. Не приводя соотвеггствующих данных, укажем лишь, что последний тип разрушения был характерен для ряда предва-  [c.206]

Типичный вид разрушения образцов, подвергнутых предварительному 100-часовому отжигу при 1477 К и испытанных при той же температуре под углом 45°, показан на рис. 17, б. Как неотож-женный образец (рис. 15,6), так и образец после 100-часового отжига разрушаются по поверхности раздела. Однако разрушение поверхности раздела в этих случаях вызвано, вероятно, различными причинами. До термической обработки прочность связи проволоки с матрицей недостаточна, чтобы противостоять данной поперечной нагрузке, но отжиг увеличивает ее. Однако после отжига большой продолжительности прочность поверхности раздела снижается из-за пористости диффузионного происхождения. Пористость может облегчать отделение волокна от матрицы вблизи поверхности раздела. Хотя зона диффузионной пористости находится снаружи исходной поверхности раздела, этот тип повреждения также связан с поверхностью раздела. Несмотря на отрицательное влияние пористости, предварительный отжиг должен в целом увеличивать прочность поверхности раздела, поскольку прочность композита при отжиге возрастает.  [c.208]

Прочность волокон не изменилась также после термической обработки образцов ири температурах до 300°С на воздухе в течение 500 ч (рис. 40). К сожалению, при более высоких температурах отжига начинается весьма интеисивпая коррозия магниевой матрицы, и материал быстро разрушается. После термической обработки в вакууме прочность волокон уменьшается лишь при температурах выше 550° С, причем волокна разупрочняются менее интенсивно, чем при контакте с алюминием. Никакихструктур-ных изменений в волокнах при этом не наблюдается.  [c.87]

Ковкий металл. Режется ножом. Можно прокатывать и прессовать. Волочению не поддается, так как вследствие незначительной прочности рвется в матрице. Подвержен наклепу и становится жестким при холодной деформации. Ра-зупрочняется при температуре ниже комнатной. Целесообразной температурой отжига является 100 С. Рекристаллизация может происходить при температуре ниже комнатной  [c.345]

Наиболее трудоемкий вид термической обработки — высокотемпературный графитнзирующий отжиг при 850—980 "С, который проводится для усгранения в металлической матрице структурно свободного цементита. Для получения перлитной основы охлаждение проводят на воздухе (нормализация), а для получения ферритной основы дают добавочную выдержку при 680— 750 С для распада эвтектоидного цементита.. Закалка в масле температурой 850—930 С с последующим отпуском и особенно изотермическая закалка на нижний бейнит (температура изотер-лгической выдержки 350—400 X) позволяют получать высокие механические свойства. Чугун со структурой нижнего бейнита имеет о - 15004-1600 МПа, Оо, == 9704-990 МПа, б = 14-2 % и 360—380 НВ.  [c.152]

Предварительные (перед кристаллизационным отжигом) деформация прокаткой аморфных сплавов Fe—Си—Nb—Si—В или их низкотемпературный отжиг позволяют еще уменьшить размер зерна приблизительно до 5 нм [162, 163]. Например, холодная прокатка аморфного сплава Fey j uiNb Siij jB, до величины деформации около 6 % (по удлинению ленты) и последующий отжиг в вакууме при 813 К в течение 1 ч привели к выделению в аморфной фазе нанокристаллических зерен ОЦК-фазы а-Fe(Si) со средним размером примерно 6—8 нм средний размер зерен в нанокристаллическом сплаве, подвергнутом только отжигу при 813 К в течение 1 ч составлял 8—10 нм. Низкотемпературный отжиг аморфного сплава Fe,,, U Nb ,Si Вд при температуре 723 К в течение 1 ч в сочетании с последующим кратковременным (в течение 10 с) высокотемпературным отжигом при 923 К позволил достигнуть среднего размера зерна ОЦК-фазы 4—5 нм. Уменьшение размера зерна в сплаве Fe—Си—Nb—Si—В после ступенчатого отжига приблизило этот сплав к структуре чистых компактных нанокристаллических металлов с размером зерна 2—5 нм, получаемой методом компактирования [130— 134]. Дополнительные деформационная или термическая обработки, понизившие размер зерна, не изменили фазовый состав сплава. По мнению авторов [163], это означает, что фазовый состав сплава Fe,, j uiNb Sii B, окончательно формируется на последней высокотемпературной стадии обработки. Уменьшение размера зерен нанокристаллической фазы вследствие предварительных деформационной или термической обработки обусловлено образованием в аморфной матрице дополнительных центров кристаллизации.  [c.55]


Для изготовления электроконтактов из порошков или смесей порошков применяют, как правило, два основных технологических варианта. Более распространено прессование заготовок и их последую-ш,ее спекание в заш,итной атмосфере. Мелкодисперсную шихту перед прессованием обкатывают или протирают через сетку с получением гранул размером 200 - 300 мкм, что позволяет повысить и стабилизировать ее насыпную плотность, улучшить текучесть и, в результате, вести прессование на прессах-автоматах. Давление прессования во всех случаях достаточно высокое (300 - 500 МПа и даже более 1500 МПа при изготовлении серебряно-вольфрамовых и медно-вольфрамовых контактов). Целесообразно применять двойное прессование с отжигом перед допрессовыванием при температуре 0,4 - 0,6 7 , матрицы. Спекают прессовки Ад - W при 10ОО °С, Си - W при 1100 °С, Ад - dO, Ад - СиО или Ад - Ni при 900 - 950 °С, причем для мелкодисперсных порошков температура спекания примерно на 100°С ниже указанных длительность изотермической выдержки составляет 3-4ч. Структура спеченного контактного материала, определяюш,ая эксплуатационные свойства контакта, может быть значительно улучшена его глубокой пластической деформацией, экструдированием или прокаткой, придаюш,ей частицам форму вытянутых волокон. Кроме того, прокаткой и экструзией или волочением после экструзии получают соответственно ленту или проволоку различного диаметра, из которых затем высаживают контакты. На рис. 59 на примере композиции Ад - dO  [c.192]


Смотреть страницы где упоминается термин Отжиг матрицы температура : [c.413]    [c.14]    [c.109]    [c.143]    [c.93]    [c.123]    [c.339]    [c.77]    [c.67]    [c.106]    [c.160]    [c.173]    [c.343]    [c.367]    [c.156]    [c.241]    [c.107]   
Матричная изоляция (1978) -- [ c.24 , c.25 ]



ПОИСК



Отжиг

Температура отжига



© 2025 Mash-xxl.info Реклама на сайте