Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Магниевые коррозия

Использование засыпки для магниевых анодов обеспечивает определенное преимущество. Оно заключается как в уменьшении сопротивления покровной пленки продуктов коррозии, таких как Mg(OH)j, так и в увеличении проводимости окружающей среды. Засыпка может состоять, например, из 20 % бентонита (неорганического коллоида, применяемого для поглощения влаги), 75 % гипса и 5 % Na SOi- Иногда засыпку заранее упаковывают в окружающую анод оболочку, для того чтобы одновременно поместить анод и засыпку в грунт.  [c.224]


Между магниевым анодом и стальным баком вместимостью 190 л с горячей водой, которая насыщена воздухом, протекает ток в 100 мА. Пренебрегая локальными токами, рассчитайте, какое время должно пройти между заполнением и опорожнением бака, чтобы свести к минимуму коррозию выпускного стального трубопровода (растворимость кислорода в поступающей воде при 25 °С составляет 6 мл/л).  [c.393]

В США для погружаемых морских конструкций наиболее употребительны сплавы системы Al-Mg различных составов. В табл. 3 представлены усредненные данные о скоростях общей коррозии и глубине питтингов после экспозиции в морской воде и в иле, а в табл. 4 указан химический состав исследованных алюминиево-магниевых сплавов.  [c.23]

Картеры редукторов изготавливают из литейного магниевого сплава МЛ5 с пределом прочности не менее 220 МПа. Этот сплав склонен к межкристаллитной коррозии, поэтому все картеры имеют антикоррозионные покрытия.  [c.666]

Летучесть — 0,76 мг/м . Защищает от коррозии изделия из стали, алюминия, его сплавов, никеля, хрома, кобальта, а также из стали фосфатированной и оксидированной. На меди и ее сплавах образует окисную пленку. Не защищает и в ряде случаев вызывает коррозию изделий из цинка, кадмия, серебра, магниевых сплавов. Чугун требует дополнительной консервации маслами или смазками. Срок действия ингибитора более 10 лет  [c.107]

Для защиты водоподогревателей (бойлеров) от коррозии их можно снабжать эмалевой футеровкой, стойкой в горячей воде, и дополнительно применять магниевые протекторы (см. раздел 21.2). В нормали Западногерманского объединения по водопроводному и газовому делу W 511 [29] регламентированы требования к качеству и правила испытания такой защитной системы. Наряду с требованиями к конструкции, самой стали и магниевым протекторам предъявляются серьезные требования также и к эмалированию. Из этих требований следует отметить, что суммарная площадь всех дефектов на резервуаре не должна превышать 7 см -м- и что протяженность одного дефекта не должна быть более 3 мм. При плотности защитного тока около 0,1 А-м требуемый ток для внутренней поверхности должен иметь плотность не более 70 мкА-м- . Для резервуаров вместимостью до 500 л, таким образом, достаточно установить один магниевый протектор.  [c.161]

Ввиду большой доли собственной коррозии при катодной защите магниевыми протекторами образуется газообразный водород. Это следует учитывать при использовании такой защиты в закрытых резервуарах, например в водоподогревателях (бойлерах). Можно показать [2], что при эмалированных водоподогревателях и нормальной работе с магниевыми протекторами нет никакой опасности хлопков или взрывов гремучего газа, в частности при работах по обслуживанию следует только соблюдать действующие инструкции [26] (см. раздел 21).  [c.188]


Катодная защита водоподогревателей из углеродистой стали получила широкое развитие, потому, что она представляет собой экономически выгодную альтернативу применению материалов повышенной коррозионной стойкости. В настоящем разделе более подробно рассматриваются две системы, нашедшие наибольшее применение на практике катодная защита эмалированных водоподогревателей с применением магниевых протекторов и комбинированная защита резервуаров и трубопроводов при помощи алюминиевых анодов с наложением тока от постороннего источника. Эти способы могут быть применены и для внутренней защиты от коррозии резервуаров с холодной водой.  [c.401]

Катодная защита резервуаров с горячей водой, изготовленных из коррозионностойкой (нержавеющей) стали, в принципе тоже возможна. Она целесообразна в первую очередь в тех случаях, когда требования DIN 50930 [3] в отношении свойств материала и содержания ионов хлора в воде не выдерживаются. При использовании магниевых протекторов с изолированной проводкой можно отрегулировать ток промежуточным включением сопротивлений до требуемой малой величины защитного тока, обеспечивающей предотвращение язвенной коррозии. Поскольку защитный потенциал высоколегированных хромоникелевых сталей согласно разделу 2.4 составляет примерно 0н=0,0 В, в качестве протекторов могут быть применены также алюминий, цинк и железо, так как даже и при пассивации этих материалов движущее напряжение остается достаточно большим.  [c.402]

Широко применяемая на практике катодная защита магниевыми протекторами резервуаров (с эмалевыми покрытиями) с горячей водой представляет собой экономичную систему защиты от коррозии (рис. 21.1).  [c.402]

Магниевые протекторы непригодны для катодной защиты от коррозии трубопроводов, испытывающих влияние высоковольтных линий. При наложении переменного напряжения, превышающего примерно 10 В, на границе раздела фаз магний — грунт наблюдается эффект выпрямления, что приводит к уменьшению защитного тока, а при более высоких напряжениях может даже вызвать изменение полярности тока (см. раздел 11.3.1).  [c.444]

Магниевые протекторы МГА из сплава Мл5 применяются при защите трубопроводов и других конструкций от почвенной коррозии. Протектор МГА представляет собой монолитный цилиндр, по продольной оси которого размещен стальной сердечник. Через него осуществляется электрический контакт протектора с проводником, подключенным к подземному сооружению. Протекторы могут быть с выводами сердечника в обоих торцах. Такая конструкция позволяет осуществить их монтаж в случае применения нескольких протекторов в виде гирлянд с вертикальной или горизонтальной установкой. В зависимости от размеров протекторы разделяются на несколько марок (табл. 75).  [c.141]

Во избежание коррозии зону контакта магниевых сплавов со сталью с анодным покрытием изолируют прокладками из инертных материалов.  [c.84]

Несмотря на разность потенциалов цинк и кадмий являются равноценными по защитному действию от контактной коррозии даже в случае контакта с магниевыми сплавами. Коррозионная стойкость кадмиевых и цинковых покрытий приведена в табл, 8 [15].  [c.86]

Церий и цирконий, будучи введены в сплавы магния с цинком и марганцем, измельчают зерно и повышают механические свойства, а цирконий еще и сопротивление коррозии. Редко.земсльные металлы и торий увеличивают жаропрочность магниевых сплавов.  [c.338]

Из-за малой устойчивости против коррозии изделия из магниевых сплавов оксидируют. Затем на оксидированную поверхносгь [шносят лакокрасочные покрытия.  [c.342]

В атмосфере. Скорость коррозии магниевого сплава высокой чистоты с 3 % А1 и 1,5 % Zn при восьмилетних испытаниях составила в тропической морской атмосфере Панамы 2,4 мм/год, в умеренной морской атмосфере Кюр-Бич (Северная Каролина)  [c.355]

Магниевые сплавы, в состав которых входят алюминий, медь, цинк и другие элементы, обладают хорошей жидкотекучестыо и применяются для изготовления литьем корпусов, крышек, фланцев и т. д. Детали из этих сплавов должны иметь зашит-ные покрытия от коррозии. Основные марки . МЛЗ, МЛ5, МЛ6, MAI, МАЗ, MAS.  [c.164]


ГОСТ 9.020 - 74. ЕСКЗС. Магний и сплавы магниевые. Методы ускоренных испытаний на общую коррозию.  [c.147]

В морской воде на коррозию щшка оказывают влияние сульфаты и хлориды. В присутствии -ионов хлора скорость коррозии увеличивается, однако одновременное наличие ионов магния и кальщ1я замедляет коррозию, так как на цинке образуется защитный слой магниевых и кальщ1евых известковых отложений.  [c.80]

Тяжелые сорта топлива обессоливают путем промывки пресной водой и последующей сепарации. Вредной примесью в топливе являются, в частности, ванадиевые соединения, вызывающие высокотемпературную коррозию лопаток. Добавка в топливо магниевых соединений приводит к образованию ванадатов магния, которые имеют высокую температуру плавления и не отлагаются на лопатках. Помимо центробежных сепараторов, используют элек-тродегидраторы, в которых происходит укрупнение и последующее выпадение капель воды из промытого топлива под действием электрического поля.  [c.348]

Роль Мв уА122 фазы в коррозии магниевого сплава А 291 44 341  [c.34]

Влияние нагрузки на величину Иг или на собственную коррозию протектора обусловлено тем, что катодный частичный ток 1к зависит от потенциала или тока. Коррозия с кислородной деполяризацией не зависит от материала и потенциала, а выделение водорода с увеличением токовой нагрузки уменьшается. Кроме того, выделение водорода существенно зависит от материала, причем более благородные элементы сплава стимулируют собственную коррозию протектора. Поскольку в обоих случаях частичный ток /д не пропорционален токоотдаче /, согласно уравнению (7.6), не может быть значений а з или собственной коррозии, не зависящих от величины I. Однако в противоположность этому при анодной реакции по уравнению (7.5а) эквивалентная реакция по уравнению (7.56) с повышением потенциала или нагрузки тоже усиливается. В таком случае / и / получаются пропорциональными между собой, и коэффициент аг становится независимым от нагрузки. Приблизительно такие условия наблюдаются в случае магниевых протекторов, причем значение 2=0,5 мож,ет быть однозначно объяснено величинами z=2 и =1 [2]. Другое объяснение этой величины 02 основывается на механизме, по которому на поверхности протектора имеется активный участок, пропорциональный току, на котором вследствие гидролиза происходят коррозия с кислородной деполяризацией и выделение водорода [3, В этом случае понятны и значения, отличающиеся от аг=0,5, в том числе и меньшие. Оба механизма практически уже нельзя различить, если места протекания частичных реакций по уравнениям (7.5а) и (7.56) очень близки между собой.  [c.177]

Даже у эффективных магниевых сплавов и при благоприятных условиях значения не превышают 0,55—0,65. Причиной большой доли собственной коррозии является выделение водорода, образующегося по катодной параллельной реакции согласно уравнению (7.56), или же развитие свободной коррозии частиц, отделенных от протектора при сильно трещиноватой его поверхности (см. раздел 7.1.1 [2—4, 19— 21]). Магниевые протекторы изготовляют в основном из сплавов. Содержание железа и никеля не должно превышать 0,003 %, так как при этом их свойства ухудшаются. Влияние меди не является однозначным. Верхним пределом ее содержания считается 0,02 %. При добавке марганца железо выпадает из расплава и при затвердевании становится безвредным ввиду образования кристаллов железа с оболочкой из марганца. Кроме того, марганец повышает токоотдачу (выход по току) в хлоридсодержащих средах. Содержание марганца должно быть не менее 0,15 %. Алюминий облегчает удаление вредного железа благодаря выпадению вместе с марганцем. Впрочем, чувствительность к повышенным содержаниям железа (более 0,003 %) в присутствии алюминия заметно повышается. При добавке цинка коррозионное разъедание становится более равномерным, к тому же снижается чувствительность к другим загрязнениям. Важнейшим магниевым протекторным сплавом является сплав AZ 63, который удовлетворяет также и требованиям стандарта военного ведомства США MIL-A-21412 А [22].  [c.186]

Оптимальный рабочий диапазон магниевых протекторов располагается при величинах pH от 9,5 до 10,5. При более низких значениях pH возрастает собственная коррозия протекторов, стационарный потеи-  [c.187]

К труднорастворимым соединениям, образующимся на магниевых протекторах при обычной токовой нагрузке, относятся гидроксид, карбонат и фосфат магния. Впрочем, растворимость гидроксида и карбоната еще сравнительно высока. Очень низкую растворимость имеет только фосфат магния. Движущее напряжение у магниевых протекторов при защите стали при не слишком малой электропроводности и> >500 мкСм-см составляет около 0,65 В, т. е. в три раза выше, чем у цинка и алюминия. Магниевые протекторные сплавы применяются преимущественно там, где движущее напряжение цинковых и алюминиевых протекторов недостаточно или где опасность пассивации слишком велика. Магниевые протекторы используют при повышенном электросопротивлении среды и для получения большей плотности защитного тока. Объектами такой защиты могут быть стальные конструкции в пресной воде, балластные танки для пресной воды, водоподогреватели и резервуары для питьевой воды. В случае резервуаров для питьевой воды важное значение имеет физиологическая безвредность продуктов коррозии (см. раздел 21.4). Здесь нельзя, например, применять алюминиевые протекторы, активированные ртутью. В грунте магниевыми протекторами можно защищать небольшие сооружения при удельном сопротивлении грунта до 250 Ом-м и более крупные резервуары и трубопроводы при сопротивлении грунта до 100 Ом-м. На объектах, имеющих органические покрытия для защиты от коррозии, в средах со сравнительно хорошей проводимостью иногда может оказаться необходимым промежуточное включение омического сопротивления для ограничения тока, чтобы не допустить повреждения покрытия слишком большим защитным током, или чтобы предотвратить установление слишком низких потенциалов (см. раздел 6).  [c.188]


Это общее утверждение впрочем не означает, что сплавы со сте-хиометрической потерей материала от коррозии совершенно непригодны для изготовления заземлителей на станциях катодной защиты. Иногда в качестве материала для анодных заземлителей применяют даже железный лом кроме того, при электролитической обработке воды используют алюминиевые аноды (см. раздел 21.3). Цинковые сплавы находят применение как материал для анодов лри электролитическом травлении для удаления ржавчины, чтобы предотвратить образование гремучего хлорного газа на аноде. Для внутренней защиты резервуаров при очень низкой электропроводности содержащейся в них воды на магниевые протекторы иногда накладывают ток от внешнего источника с целью увеличить токоотдачу (в амперах) (см. раздел 21.1). По так называемому способу Кателько наряду с алюминиевыми анодами (протекторами) намеренно устанавливают медные, чтобы наряду с защитой от коррозии обеспечить также и предотвращение обрастания благодаря внедрению токсичных соединений меди в поверхностный слой. Впрочем, все такие области применения являются сугубо специальными. На практике число материалов, пригодных для изготовления анодных заземлителей, сравнительно ограничено. В основном могут применяться следующие материалы графит, магнетит, ферросилид с различными добавками, сплавы свинца с серебром, а также так называемые вентильные металлы с покрытиями из благородных металлов, например платины. Вентильными называют металлы с пассивными поверхностными слоями, не имеющими электронной проводимости и сохраняющими стойкость даже при очень положительных потенциалах, например титан, ниобий, тантал и вольфрам.  [c.198]

Согласно нормали TRbF 102, пункт 6.2, использование резервуаров-храиилищ и подключенных к ним трубопроводов в качестве заземляте-лей не разрешается [17]. Для снижения катодного сопротивления растеканию тока при одновременном предотвращении повышенной потребности в защитном токе оказалось целесообразным подсоединять к резервуарам-хранилищам в качестве заземлителей магниевые протекторы. Сопротивление растеканию тока с протекторов в грунт должно составлять 65 В//утечки. Величину защитного тока следует настроить так, чтобы получалось небольшое натекание тока (порядка нескольких миллиампер) в магниевые протекторы, с целью уменьшить их коррозию. При защитной схеме с контролем аварийного потенциала (FS), если вспомогательный заземлитель располагается в воронке напряжения над анодным заземлителем, возмол но срабатывание далее и при отсутствии аварийного потенциала. В таких случаях, которые впрочем можно предотвратить проведением соответствующих мероприятий при сооружении систем катодной защиты, может оказаться полезным включение конденсатора соответствующей емкости в подводящий кабель к вспомогательному заземлителю. Во взрывоопасных зонах нул<но также учитывать и соответствующие предписания и нормативы [16, 18—20].  [c.285]

Опасность коррозии у дефекта обусловливается обычно только образованием коррозионного элемента со вставными конструкциями, имеющими сравнительно положительный потенциал и большую площадь, если катодная защита вышла из строя или оказалась на отдельных участках неэффективной [см. формулу (2.43)]. На электрических водо-подогревателях, показанных на рис. 21.1, это в принципе возможно тогда, когда погружной электронагревательный элемент встроен в корпус без электрической изоляции. В этом случае ток, отдаваемый магниевым протектором, отводится вставным нагревательным элементом, имеющим положительный потенциал. Дефект, находящийся на участке, экрани-  [c.403]

Поскольку скорость разрушения магниевых протекторов в эмалированных резервуарах с водой в отличие от других случаев их применения в гораздо меньшей степени определяется токоотдачей и зависит в основном от собственной коррозии, долговечность даже при известной величине требуемого защитного тока /з (мА) и массы протекторов т нельзя непосредственно рассчитать по формулам (2.3), (2.4), (2.6),  [c.405]

Судостроение, а позднее и сооружение портов являются одними из старейших областей применения катодной защиты от коррозии (см. раздел 1.3). Для судов и сооружений, располагаемых в прибрежном шельфе, пока применяют преимущественно протекторную защиту, тогда как для портовых сооружений и мостовых перегружателей ввиду потребности в большом защитном токе предпочитают применять станции катодной защиты. Характерные проблемы коррозии для сооружений в прибрежном шельфе встретились уже в середине 1950-х гг. в Мексиканском заливе. Однако скорость коррозии здесь была меньшей по сравнению с наблюдаемой в Северном море (см. табл. 17.2). В допол-нение к этому на передний план все более выступают проблемы усталостного коррозионного растрескивания [13]. В отличие от свайных причалов н судов, на сооружениях в прибрежном шельфе в большинстве случаев не применяют никаких защитных покрытий или используют только временные покрытия. Защита от коррозии обеспечивается по катодной схеме. Значение токоотдачи (в ампер-часах) протекторов из алюминиевых, магниевых и цинковых сплавов согласно данным табл. 7.2—7.4 относятся как 3,1 1,4 1. Напротив, цена этих протекторов (в марках за 1 кг) относится как 1,3 2,8 1, так что удельные затраты в марках ФРГ на 1 А-ч находятся между собой в соотношении 1 2,4 4,7 и наиболее выгодными оказываются алюминиевые протекторы. Многолетние наблюдения за протекторами трех типов в Мексиканском заливе показали, что затраты на них относятся между собой как 1 3,5 2 [13]. Таким образом, магниевые протекторы для использования в прибрежном шельфе неэкономичны. Защита цинковыми протекторами обходится дороже защиты алюминиевыми протекторами.  [c.421]

Обычная коррозионная стойкость материала не является показательной в отношении склонности его к коррозионному растрескиванию. Известно, например, что высокопрочные деформируемые сплавы системы А1—Zn—Mg при хорошей общей коррозионной стойкости обладают высокой чувствительностью к КПН, особенно в зоне сварных соединений, что затрудняет их применение [64]. Углеродистые и малолегированные стали весьма стойки к общей коррозии в щелочной среде при повышенных температурах, в то же время они склонны к КПН в этих средах. Наоборот, многие магниевые сплавы, весьма чувствительные к общей коррозии, не проявляют существенной склонности к разрушению типа КПН, то же можно сказать о широко распространенном алюминиевом сплаве АК4 и др. Вместе с тем каверны, язвы и другие коррозионные повреждения, являясь концентраторами напряжений, часто служат очагами коррозионного растрескивания. Если материал склонен и к общей коррозии, и к КПН, трудно разделить эти два процесса как в начальной стадии, так и при развитии разрушения. Так, коррозионное растрескивание титановых сплавов ВТ6, ВТ 14 (термоупрочненного)  [c.73]

Из алюминиевомагниевых сплавов за 2 года испытаний наиболее коррозионностойкими оказались сплавы системы А1—Mg—Zn и А1—Mg так как изменение массы этих сплавов по сравнению с остальными алюминиевомагниевыми сплавами с самого начала опыта было наименьшей. У сплавов системы А1—Mg—Си потеря в весе была примерно в полтора раза больше как в открытой атмосфере, так и в павильоне жалюзийном. Магниевый сплав МА2-1 корродировал в 6 раз сильнее в открытой атмосфере, чем в павильоне. Сплавы систем А1—Mg—Си А1—Mg—Zn А1—Mg—Si корродировали в павильоне с жалюзи примерно в 2 раза больше, чем на воздухе. Такое своеобразное поведение алюминиевых сплавов в павильоне и в открытой субтропической атмосфере зависит от свойств образующихся продуктов коррозии. В павильонах жалюзийных создается своеобразный микроклимат, в результате чего амплитуда колебаний метеорологических элементов ниже, чем в атмосфере. Вследствие этого конденсация влаги и ее абсорция продуктами коррозии уменьшаются, что уменьшает скорость коррозии металлов и сплавов. Однако для некоторых алюминиевых сплавов более существенным фактором оказывается длительность пребывания пленки электролита на поверхности металлов, которая в павильоне больше, чем в открытой атмосфере, где солнечная радиация, ветры высушивают поверхность металла быстрее. Как видно, множество факторов, влияющих на атмосферную коррозию, не позволяет по одному какому-нибудь параметру предсказывать коррозионное поведение металлов и изделий в субтропиках.  [c.77]


Алюминиевые материалы в воде можно предохранить от питтинга ( помощью катодной защиты, если поддерживать электродный потен циал ниже потенциала питтинговой коррозии в данной систем материал - среда. Однако катодное выделение водорода ведет t повышению pH, и при чрезмерном его повышении алюминий може-подвергнуться коррозии. Такой перезащиты следует избегать, следз за тем, чтобы электродный потенциал не опускался ниж< определенной критической величины в почве и пресной воде - эк -1,2В (по отношению к медно-сульфатному электроду). На практике алюминий может быть защищен с помощью гальванически жертвенных анодов, например цинковых или цинкалюминиевы> анодов в морской воде магниевых анодов для конструкций в пресной или солоноватой воде, а также для неокрашенных поверхностей пол землей цинковых - для окрашенных подземных конструкций. Катодная защита может быть достигнута также путем плакирования менее благородным металлом, чем основа. Для нелегированногс алюминия это может быть, например покрытие из A Zn .  [c.128]

Такие металлы, как железо и цинк, процесс коррозии которых в Нейтральных средах протекает с катодным контролем, корродируют в щелях с меньшей скоростью, чем вне их. Магниевые сплавы и некоторые нержавеющие стали, корродирующее с анодным контролем, разрушаются в щелях интенсивнее, чем на открытой поверхности. Следовательно, для у1Леродистых сталей при коррозии под напряжением в нейтральных и слабокислых средах собственно щелевой эффект рост трещин ускоряет несущественно.  [c.59]


Смотреть страницы где упоминается термин Магниевые коррозия : [c.351]    [c.20]    [c.110]    [c.196]    [c.277]    [c.183]    [c.152]    [c.44]    [c.169]    [c.402]    [c.403]    [c.403]    [c.406]    [c.142]    [c.102]    [c.443]   
Конструкционные материалы Энциклопедия (1965) -- [ c.2 , c.9 , c.117 , c.119 , c.123 , c.130 ]



ПОИСК



Контактная коррозия магниевых сплавов

Контактная коррозия магниевых сплавов титановых сплавов

Коррозия бериллия магниевых сплавов

Коррозия магниевых сплавов

Покрытия, коррозия магниевые

Собственная коррозия (саморастворение) цинковых и магниевых протекторов

Сплав магниевый предохранение от коррозии

Хам б л, Применение магниевых анодов для защиты от коррозии



© 2025 Mash-xxl.info Реклама на сайте