Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Линейные феноменологические соотношения между термодинамическими силами и потоками

Линейные феноменологические соотношения между термодинамическими силами и потоками. В термодинамике необратимых процессов (И. П. Базаров, 1983) применительно к системам с малыми неравновесностями используются следующие принципы.  [c.38]

Один из возможных путей дальнейшего анализа необратимых термодинамических процессов предполагает наличие линейных феноменологических соотношений между обобщенными потоками и обобщенными термодинамическими силами  [c.195]


Вообще говоря, теорию линейной реакции можно построить на различных уровнях описания системы. В феноменологической неравновесной термодинамике [70] используется чисто макроскопический подход, основанный на локальных уравнениях состояния и линейных соотношениях между неравновесными потоками и так называемыми термодинамическим силами. Эти силы описывают либо механические возмущения связанные с работой, производимой над системой, либо термические возмущения вызванные внутренней неравновесностью системы и контактом системы с окружением ). Коэффициенты в соотношениях между потоками и термодинамическим силами называются кинетическими коэффициентами. В неравновесной термодинамике они являются заданными величинами и берутся из эксперимента.  [c.338]

Это —простой пример того, как выражение для производства энтропии можно использовать для получения линейных соотношений между термодинамическими силами и потоками, хотя нередко эти соотношения описывают эмпирически открытые законы, аналогичные закону О.ма. В разд. 10.3 мы покажем, что рассмотрение производства энтропии, обусловленного диффузией, приводит к другому эмпирически открытому закону, называемому законом диффузии Фнка. Современная термодинамика позволяет включить в единый формализм многие из таких феноменологических законов.  [c.259]

Метод, принятый в термодинамике неравновесных процессов, состоит прежде всего в том, что устанавливают различные законы сохранения микроскопической физики законы сохранения материи, импульса, момента импульса и энергии. В 2 этой статьи мы дадим формулы этих законов применительно к изотропным жидкостям, в которых имеют место тепло- и массоперенос и вязкое течение. В 4 и 5 рассмотрены эффекты, вызванные химическими реакциями, релаксационными процессами и действием внещних сил. С помощью законов сохранения описан закон энтропии Гиббса и введено уравнение баланса, которое содержит в себе как основной термин величину прироста энтропии. Выражение для прироста энтропии в этом случае является суммой членов, обусловливаемых теплопроводностью, диффузией, вязким течением и химическими реакциями ( 3—5). Каждый из этих членов состоит из произведения потока (например, потока тепла или диффузионного потока) и термодинамической силы (например, градиента температуры или градиента концентрации). Можно установить линейную зависимость (называемую феноменологическими уравнениями) между этими потоками и термодинамическими силами ( 6). Коэффициенты, появляющиеся в этих уравнениях, суть коэффициент теплопроводности, коэффициент диффузии и тому подобные. Между ними существует определенная зависимость как результат временной инвариантности (соотношение Онзагера) и возможности пространственной симметрии (принцип Кюри). Окончательно включением феноменологических уравнений в законы сохранения и законы энтропии а также с помощью приведенных ниже уравнений состояния ( 7) получают полную систему дифференциальных уравнений, описывающих поведение объекта.  [c.5]


Термин молекулярный диффузионный перенос охватывает явления диффузии, теплопроводности, термодиффузии и вязкости. Эти явления описываются некоторыми частями уравнений сохранения массы, количества движения и тепла, приведенных в предыдущем параграфе (см. уравнения (2.1.57)-(2.1.60)). В каждое из этих уравнений входит дивергенция потока некоторой величины, связанной, хотя бы и неявно, с градиентами термогидродинамических параметров (так называемыми термодинамическими силами). Существуют два способа получения линейных связей определяющга соотношений) между этими потоками и сопряженными им термодинамическими силами, основывающихся на макроскопическом (феноменологическом) и кинетическом подходах. Кинетический подход связан с решением системы обобщенных уравнений Больцмана для многокомпонентной газовой смеси и до конца разработан только для газов умеренной плотности, когда известен потенциал взаимодействия между элементарными частицами (см., например, Чепмен, Каулинг, 1960 Ферцигер, Капер, 1976 Маров, Колесниченко, 1987)). Феноменологический подход, основанный на применении законов механики сплошной среды и неравновесной термодинамики к макроскопическому объему смеси, не связан с постулированием конкретной микроскопической модели взаимодействия частиц и годится для широкого класса сред. В рамках феноменологического подхода явный вид кинетических коэффициентов (коэффициентов при градиентах термогидродинамических параметров в определяющих соотношениях) не расшифровывается, однако их физический смысл часто может быть выяснен (например, для разреженных газов) в рамках молекулярно-кинетической теории Маров, Колесниченко, 1987)  [c.85]

Напомним, что формально процедура термодинамики необратимых процессов заключается в следующем. На основе уравнений сохранения и принципа локального термодинамического равновесия (ЛТР) выписывается уравнение баланса энтропии системы. В этом уравнении выделяется главная часть, удовлетворяющая принципам инвариантности, которая в дальнейшем интерпретируется как выражение для источника энтропии системы (Тэнтр. Далее феноменологические законы формулируются как наиболее общие линейные соотношения между обобщенными термодинамическими величинами (термодинамическими потоками и термодинамическими силами) одной тензорной размерности, входящими в выражение для источника энтропии. Для системы без электромагнитного поля такая [процедура и вытекающие из ее применения феноменологические соотношения (законы) подробно описаны в первой части курса (ч. I, гл. I 1.3). В настоящей части мы произведем такую же процедуру для систем о электромагнитным полем.  [c.13]


Смотреть страницы где упоминается термин Линейные феноменологические соотношения между термодинамическими силами и потоками : [c.91]   
Смотреть главы в:

Динамика многофазных сред. Ч.1  -> Линейные феноменологические соотношения между термодинамическими силами и потоками



ПОИСК



5 — Соотношения между

Поток силы

Поток термодинамический

Силы термодинамические

Соотношение линейное

Соотношения между линейным и линейное

Соотношения термодинамическое

Термодинамические потоки и силы



© 2025 Mash-xxl.info Реклама на сайте