Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ввод кольцевой

Второй вариант. Для уменьшения моментов в месте сопряжения двух участков трубы в рассматриваемом сечении вводим кольцевое ребро с размерами сечения в горизонтальном и вертикальном направлениях соответственно 2,5 и 1,5 м, при этом Vb = Vh=2°10. Положительное направление внутренние сил при выполнении расчетов с учетом кольцевого ребра принято в соответствии с рис. 4.9.  [c.312]

В методе темного поля вводится кольцевая диафрагма 26 и кольцевое зеркало 24 (при этом пластинка 25 выводится из хода лучей).  [c.40]


Устройство с гибкими тягами и силовым цилиндром. На раструбный конец трубопровода надевается скоба захвата так, чтобы ее крюки располагались в горизонтальной плоскости. В раструб трубы вводят кольцевую направляющую торцового упора со скрепленным с ним корпусом силового цилиндра. При этом торцовый упор и коуш на конце штока вместе с огибающей его тягой должны быть расположены также в горизонтальной плоскости. После этого каждый из концов тяги соединяется одним из отверстий регулировочной планки с соответствующим крюком скобы захвата. При подаче жидкости в полость силового цилиндра происходит натяжение гибкой тяги. Выдвижению штока сопутствует подача трубы к раструбу трубы и ввод гладкого конца в раструб при соблюдении соосности труб (рис. 50.4, д).  [c.400]

Рис. 3-1-1 д — тележка для поднятия и перевозки баллона (I — надвигание тележки на баллон II — ввод кольцевого отверстия тележки на колпак баллона, III — опускание задней части тележки и запирание клином в ней баллона, IV — выпрямление тележки до горизонтального уровня) 6 — запорный клин 7 — рукоятка запорного клина 8 — колпак на баллон  [c.389]

Рис. 48. Жидкостной нейтрализатор с кольцевым вводом отработавших газов Рис. 48. Жидкостной <a href="/info/195133">нейтрализатор</a> с кольцевым вводом отработавших газов
Ввод потока в аппарат через наклоненный патрубок. Растекание струи но сечению рабочей камеры аппарата при вводе потока вниз через патрубок под углом 45° (рис. 8.7) практически мало отличается от рассмотренного ранее при входе потока вниз через плавный отвод под углом 90°. Если поток вводится вниз под углом 45° к горизонту, то, как и при угле-90°, струя направляется к днищу аппарата, по которому растекается радиально, но несимметрично. Достигая стенок корпуса аппарата, жидкость поднимается вдоль этих стенок в виде кольцевой струи. До начала  [c.208]

Кольцевой (периферийный) ввод потока в аппарат. Для многих аппаратов конструктивно лучше осуществлять ввод потока периферийно, по кольцу, опоясывающему начальный участок корпуса аппарата. Такой ввод потока был подробно исследован на описанной модели аппарата круглого сечения с отношением площадей Р /Ро 16. При этом необходимо было уточнить вопрос о том, существенно ли выполнение подводящего кольца с переменным сечением или оно может иметь постоянное  [c.210]


Исследования показали, что при кольцевом (периферийном) вводе потока в аппарат движение жидкости значительно сложнее, чем при обычном боковом. Струя, поступая в кольцо и взаимодействуя со стенкой корпуса аппарата, разделяется на две части, обтекает эту стенку и устремляется по инерции в противоположный конец кольца. Отсюда через щели в стенке корпуса аппарата она выходит в его полость. При этом создаются условия для двойного винтового (вихревого) движения (рис. 8.8, а). В результате распределение скоростей по сечению рабочей камеры аппарата получается неравномерным (Ai = 1,8-н2, табл. 8.3). Закручивание потока столь значительное, что сохраняется даже после установки в начале рабочей камеры плоской решетки. Поэтому и за решеткой неравномерность распределения вертикальных составляющих скоростей не устраняется (Л = = 1,5- 2,0). Только после наложения на плоскую решетку спрямляющего устройства в виде ячейковой решетки, устраняющей закручивание потока, достигается практически полное выравнивание скоростей по всему сечению (М — 1,08ч-1,10). Опыты показывают, что установка одного спрямляющего устройства без плоской решетки неэффективна (см. рис. 8.8, б), так как вследствие малого сопротивления это устройство не может выравнять скорости по величине.  [c.213]

Кольцевой вариант ввода потока может оказаться лучшим для аппаратов, в которых рабочими элементами являются набор труб с длиной, обеспечивающей необходимый коэффициент сопротивления (например, трубные теплообменники), или короткие трубки, заполненные кусковым материалом, создающим требуемое сопротивление (абсорберы и др.). Трубные решетки с достаточным коэффициентом сопротивления вызывают такое же выравнивающее действие, как и описанное выше распределительное устройство в виде плоской решетки с наложенной на нее спрямляющей (ячейковой) решеткой.  [c.214]

Кольцевой ввод потока в узел изоляции коронирующей системы электрофильтров (А. с. 663904 (СССР)]. С целью исключения возможности попадания очищаемого газа в изоляторную коробку коронирующей системы электрофильтров в узел изоляции (рис. 8.9) подается под давлением определенное количество азота, который затем выходит по вертикальному каналу 1 в корпус электрофильтра. Подвод азота п узел изоляции коронирующей системы электрофильтра удобно осуществить по кольцевому каналу 2. Полная изоляция коробки изолятора от очищаемого газа может быть обеспечена не только при определенном расходе азота, но и при условии, что поток на выходе из изоляторной коробки (сечение 2—2) распределен равномерно по сечению. Однако вследствие закручивания потока за кольцевым входом это условие, как было рассмотрено, не обеспечивается. В то же время устанавливать полную спрямляющую решетку (на все сечение 1—/), устраняющую это закручивание, при наличии на оси коробки коронирующих электродов нельзя.  [c.215]

Если необходимо сохранить правильную цилиндрическую форму, то следует вводить на торцах кольцевые ребра жесткости (ряс. 242 в).  [c.371]

Для облегчения разборки, особенно в соединениях с напряженными посадками, а также в конусных соединениях, вводят съёмные устройства, например гайки с дифференциальной резьбой (вид н). В конструкции о гайка при отвертывании снимает ступицу упором в кольцевой стопор 1.  [c.245]

Широко применяют фиксацию пружинными кольцевыми стопорами. Для облегчения монтажа стопоры обычно устанавливают с зазором. V = 0,1 = 0,2 мм (вид р). При необходимости беззазорной фиксации вводят калиброванные шайбы 5 (вид с) или применяют конические стопоры (вид т).  [c.477]

Вал вместе с подшипником вводят в корпус (вид о) до упора в кольцевой стопор 2, предварительно установленный в корпусе, после чего узел замыкают стопором 3, заранее заведенным за подшипник.  [c.520]

Течение в закрученных потоках существенно необратимо, причем необратимость увеличивается с ростом интенсивности закрутки. Часть запаса полной энтальпии, имеющейся у газа на входе в закручивающее устройство, расходуется на преодоление трения, другая — на генерацию турбулентных пульсаций и перестройку течения в процессе продвижения по каналу и за его пределами для случая свободно затопленной струи. В [62] вводится параметр v, который предложено называть коэффициентом потока кинетической энергии кольцевого закрученного потока. Такие течения наиболее часто формируются во фронтовых устрой-  [c.24]


Втекающий сжатый газ формирует на входе в камеру энергетического разделения периферийный вихрь, который перемещается от соплового ввода к дросселю по узкому кольцевому каналу с фаничными относительными радиусами 7 и 7,, равным 1. Расход через трубу максимален при критическом перепаде давления  [c.195]

Так, в соответствии с Программой обследования технического состояния сосудов и аппаратов технологических установок нефтеперерабатывающих и нефтехимических производств , учитывая опыт эксплуатации и результаты обследования ряда НПЗ и ХЗ для сосудов и аппаратов, объем контроля которых при изготовлении соответствовал требованиям Правил и ОСТ 26-291 в зависимости от группы, при диагностировании обязательному контролю (не менее 3-5 участков) следует подвергать участки с перекрещивающимися швами, сварные стыки днищ с обечайкой корпуса, стыки в области ввода и вывода продуктов, орошений и т.п. наиболее напряженных местах. В этом случае УЗД продольных сварных швов проводится на участке длиной до 800 мм, а участков кольцевых сварных швов не менее 400 мм от места пересечения с продольным швом.  [c.210]

Основное количество повреждений (247) наблюдалось в течение первых шести лет эксплуатации. В 1971-1973 гг. оно непрерывно возрастало. В следующие три года несколько снизилось, но все же находилось на недопустимо высоком уровне. Затем количество повреждений снизилось до минимума и держалось на таком уровне до 1995 г. В последние годы начали поступать сведения об одиночных коррозионных повреждениях трубопровода, причина возникновения которых требует выяснения. Большинство повреждений имело вид нераскрывшихся коррозионных трещин различной длины (20-150 мм) на продольных заводских сварных швах поблизости от кольцевых монтажных швов или непосредственно на них. Известно, что с момента ввода в эксплуатацию по апрель 1972 г. по трубопроводу Оренбург-Заинск транспортировался неингибированный газ с содержанием Н25 до 2,5% об., который мог вызвать сероводородную коррозию металла, проявляющуюся в разных формах — от общей равномерной коррозии до водородного расслоения и сероводородного растрескивания.  [c.62]

Рассеяние частиц происходит в сферически симметричном силовом поле, и дифференциальное сечение удобнее выражать через телесный угол, образуемый всеми направлениями рассеяния частиц, заключенных в интервале углов от О до +Зд. Очевидно, величина этого телесного угла определяется размером площади кольцевой зоны на поверхности сферы единичного радиуса бш = 2я з1п ОбО. Вводя телесный угол йш, уравнение (34.13) можно привести к виду  [c.128]

Рабочая площадь поршня определяется путем сложения площади сечения поршня и половины площади кольцевого зазора между поршнем и цилиндром. Масса калиброванных грузов, а также масса поршня с тарелкой, на которой размещены грузы, подбираются с учетом ускорения силы тяжести gи= = 9,80665 м/ . При несоответствии местного ускорения силы тяжести g величине Ян вводится поправка  [c.154]

Кольцевые сети должны быть присоединены к наружной кольцевой сети не менее чем двумя вводами, как правило, к различным участкам наружной кольцевой сети. Если на каждом вводе имеется измерительное устройство, то на вводах водопровода необходимо предусмотреть установку обратных клапанов.  [c.384]

При проектировании системы холодного водопровода желательно применять нижнюю кольцевую схему разводки. Для обеспечения надежности и бесперебойности работы системы хозяйственно-питьевого водопровода устраивают два ввода.  [c.399]

Выкидные линии нефтяных скважин обрабатываются ингибированной жидкостью, поступающей из добывающих скважин, а ингибирование шлейфовых трубопроводов, как правило, осуществляется за счет ингибитора, применяемого для защиты оборудования для добычи газа. Для увеличения степени защиты выкидных линий и шлейфовых трубопроводов их дополнительно защищают периодическим или непрерывным вводом раствора ингибитора в начальные участки. Лучшая ингибиторная защита шлейфовых трубопроводов достигается при условии эксплуатации их в кольцевом режиме движения среды, когда растворенный в жидкой фазе ингибитор равномерно смачивает внутреннюю поверхность трубопроводов.  [c.179]

Примером конструкции грузового винтового механизма может служить домкрат (рис. 164, а). Гайка запрессована в чугунный корпус. Винт враш,ается и перемеш,ается поступательно. Враш,е-ние винта обеспечивается усилиями одного или двух рабочих. Рукоятка, к которой прикладывается усилие, проходит через отверстие в головке винта. На головке укреплена чашка, упирающаяся в груз. Для уменьшения трения между головкой винта и чашкой по кольцевой опорной поверхности уменьшают радиус опорной поверхности чашки или заменяют трение скольжения трением качения, вводя упорный шарикоподшипник (рис. 164, б). На конце винта укреплена шайба, препятствующая полному вывинчиванию винта из гайки в результате невнимательности рабочего.  [c.194]

Конические отсеки (рис. 141, я) усиливают, вводя кольцевые пояса жесткости 1, 2,3, выполняя отсеки двустенными 4 и придавая стенкам сводчатые формы (рис. 141,6). На рис. 141 в показана конструкция двустенной сферической консольной детали.  [c.266]

Прибор подобен фазовоконтрастному микроскопу. В приборе, использованном Ломером и Праттом [59], в осветитель вводится кольцевая диафрагма, а фазовое кольцо заменяется непрозрачным кольцом. Гладкие участки поверхности не освещаются и выглядят темными, тогда как наклонные или шероховатые участки выглядят светлыми. Перемещая диафрагму, можно последовательно осветить различные участки поверхности для определения угла цаклона между ними требуется количественная оценка этого перемещения. С наибольшим удобством это выполняется с помощью замены  [c.365]


При контактном подводе тока (рис. 8.83, а) необходимость смены контактов I вследствие их износа заставляет периодически останавливать стаи. Более перспективен индукционный подвод. энергии кольцевым индуктором 2 (рис. 8,8r-f, б). В этом случае для уменьшения потерь энергии в результате прохождения тока по телу заготовки внутрь трубы 1 вводят магнитный сердечник 3, который изменяет сопротивление так, что почти весь вapoчF ый ток 4 направляется по свариваемым кромкам. Высокие скорости процесса при сварке труб ТВЧ затрудняют разрезку непрерый - ой трубы на мерные длины  [c.304]

Кольцевые проушины, подвергающиеся растяжению (конструкция 11), испытывают изгиб (штриховые линии), который можно уменьшить уси-.ленпем участков перехода от кольца к точкам приложения сил (конструкция 12). При необходимости сохранения строго цилиндрической фо)змы (например, случаи проушин, несущих подшипники качения) вводят усиливающие перемычки (конструкция 13). В прямоугольной проушине 14 изгиб стенок, перпендику.лярных к действию растягивающих сил, передаваясь через угловые сопряжения продольным стейкам, вызывает их прогиб (штриховые линии), который можно устранить усилением поперечных стенок (конструкция 15) или уменьшением жесткости угловых сопряжений (конструкция 16).  [c.562]

Чаще всего масло вводят в подшипники через сверления в корпусе (ркс. 364, а) или вале (вид б). Ввод через кольцевые канавки (виды в, г) применяют при необходимости увеличить прокачку масла через подшипник, а также при нагрузке переменного направления. Следует иметь в виду, что кольцевые канавки резко снижают несз щуЕО способность, превращая подшипник в два коротких подшипника. Ввод масла с торца (вид д) не снижает несущей способности подшипника, но прокачка масла в этом случае примерно в 2 раза меньше, чем при центральных кольцевых канавках.  [c.363]

В промежутофых установках масло чаще всего вводят по кольцевой канавке в подшийнике (вид ж), откуда оно поступает через радиальные сверления в полость вала.  [c.413]

Сжатый воздух из магистрали через патрубок 1, силикагелевый осушитель 2, теплообменник 3 подается на вход в сопловой ввод закручивающего устройства вихревой трубы 4. Охлажденный в вихревой трубе 4 поток через отверстие диафрагмы 5, щелевой диффузор 6 поступает в камеру холода 7, где осуществляет необходимый теплосъем от охлаждаемого объекта. Из камеры холода 7 через кольцевую полость 5 и второй контур теплообменного аппарата отработавший охлажденный поток отсасывается эжектором 9 в атмосферу. В качестве активного газа в эжекторе 9 используется подогретый поток, истекающий из вихревой трубы. Режим работы вихревой холодильной камеры ХК-3 регулируется изменением относительной доли охлажденного потока с помощью регулировочной иглы 10, управляемой сектором 11. Охлаждаемый вихревой камерой объем тщательно изолируется крышкой 12, снабженной резиновым уплотнением и зажимным винтом. Вакуум в холодильной камере, создаваемый эжектором, способствует повышению поджатия крышки и надежности уплотнения. Наличие в замкнутом объеме холодильной камеры под теплообменным аппаратом 3  [c.234]

Опишем цикл предлагаемой установки изображенный на Т, S-н Р, i — диаграммах (рис. 8.20). В предлагаемой установке в вихревой трубе происходит сепарация конденсата — жидкой фазы хладагента и отвод части несконденсировавшегося газа. Как уже отмечалось, вихревая труба выполняет роль конденсатора и расширительного устройства с переохладителем. После процесса охлаждения 2"—2 рабочее тело через завихритель 13 подается в вихревую трубу 3 в виде интенсивно закрученного вихревого потока. В процессе энергоразделения повышается температура у периферийного потока, перемещающегося от соплового ввода за-вихрителя 13 к крестовине 7. Температура периферийных масс газа на 30—50% выше исходной. Этот факт и высокий коэффициент теплоотдачи от подогретых масс газа к стенкам камеры энергетического разделения 14 приводит к интенсификации теплообмена и уменьшению потребной поверхности теплообмена у конденсатора, а, следовательно, обеспечивает уменьшение его габаритов и металлоемкости. В приосевом вихре, имеющем пониженную температуру за счет расширения в процессе дросселирования и вследствие реализации эффекта Ранка, происходит конденсация. Образовавшиеся капли влаги отбрасываются центробежными силами на периферию. Часть конденсата вытекает через кольцевую щель 18 в конденсатосборник, а другая уносится потоком и вытекает через кольцевое коническое сопло 9 в камеру сепарации 4. По стенкам камеры сепарации жидкая фаза хладагента стекает и отводится в испаритель 10. Из испарителя 10 жидкая фаза прокачивается насосом 11 через охлаждаемый объект 12, охлаждает его и возвращается в испаритель 10. Из испарителя 10 паровая фаза через сопло 17 поступает в вихревую трубу в центральную ее часть в область рециркуляционного течения и через коническое кольцевое сопло 9 выбрасывается в се-парационную камеру 4, откуда в виде паровой фазы всасывается вновь в компрессор 1, сжимается до необходимого давления и вновь возвращается через теплообменник 2 на вход в вихревую трубу 3. По межрубашечному пространству 16 между камерой энергоразделения 14 и кожухом 15 циркулирует охлаждающая  [c.397]

Может быть применен другой метод оценки целостности покрытия— испытание в аппаратах с непрерывным взвешнванпе.м. Образец подвешивается в печи и прикрепляется к коромыслу ана-лптических весов. Серию образцов можно испытывать одновременно в кольцевой печи, где они подвешиваются и вращаются. В определенный момент вращение прекращается и образец, оказавшийся под коромыслом, взвешивается. Этим методом массу образца можно контролировать на протяжении всего опыта, не вводя дополнительных искажений, возникающих за счет охлаждения образца перед взвешивапие.м.  [c.178]

Для сварных соединений с косой прослойкой (рис. 1.7, г) вводится понятие поперечной податливости соединяемых 1)ассматриваемой прослойкой элементов конструкции. Существуют две основные схемы нагружения (рис. 1.8). Первая, допускающая относительное смещение соединяемых элементов Т в поперечном направлении, условно названа мягкой . Она реализуется при нагружении листовых конструкций с небольшой поперечной жесткостью, а также в ряде других случаев — например, при испытании образцов с рассматриваемой прослойкой, когда нагружение осуществляется через шарниры. Вторая схема — жесткая , реа-ли.зуется при отсутствии поперечной податливости элементов Т — в кольцевых (сварных и паяных) стыках оболочек.  [c.21]

Подобное охлаждение газового потока осуществляется в трубке Ранка-Хильша, показанной на рис. 9.25. Поток газа вводится в трубку через тангенциальные каналы, вследствие чего происходит его закручивание. Центральная часть потока обладает большей скоростью и поэтому охлаждается. Охлажденный газ выводится из трубки через расположенное па оси трубки отверстие А. Неохлажденная или, точнее, малоохлажденная, периферическая часть газа выводится через кольцевое отверстие В.  [c.328]


Гл. 7 и 8 в наибольшей степени имеют прикладной характер. В гл. 7 вводятся основные количественные характеристики, обычно используемые при одномерном описании двухфазных потоков в каналах расходные и истинные паросодержания, истинные и приведенные скорости фаз, скорость смеси, коэффициент скольжения, плотность смеси. При рассмотрении методов прогнозирования режимов течения (структуры) двухфазной смеси акцент делается на методы, основанные на определенных физических моделях. Расчет трения и истинного объемного паросодержания дается раздельно для потоков квазигомогенной структуры и кольцевых течений. В гл. 8 описаны двухфазные потоки в трубах в условиях теплообмена. Приводится современная методика расчета теплоотдачи при пузырьковом кипении жидкостей в условиях свободного и вынужденного движения. Сложная проблема кризиса кипения в каналах излагается прежде всего как качественная характеристика закономерностей возникновения пленочного кипения при различных значениях  [c.8]

ВВОД 9 I 2 — обратный клапан 3 — перемычка 4 — водомерный узел 5 — пожарный СТОЯК Пожарные краны 7 — запорные аенгнлн стояков 8 — поли вочный кран 5— спуск (пробка) — кольцевая магистраль и — ввод 2 /2— запорная арматура /2 — насосная установка  [c.382]

Здесь а и Ь — внутренний и внешний радиусы кольцевой области, а р — немая переменная интегрирования. Функции, определяемые зависимостями (е) и (ж), вводятся в (е). Затем из формул (б) находятся перемещения, а по ним с помощью формул (48), (49) и (50) —компоненты деформации 8 ., ео, Тг0- Они в свою очередь приводят к напряжениям путем использования уравнений (б) и (в) из 150 для плоского напряженного состояния и уравнений (б) из 151 для плоской деформации. Зависимость между касательным напряжением и деформацией сдвига имеет просто вид Тгв = Оугв.  [c.485]


Смотреть страницы где упоминается термин Ввод кольцевой : [c.346]    [c.64]    [c.374]    [c.313]    [c.413]    [c.520]    [c.398]    [c.106]    [c.163]    [c.226]    [c.139]    [c.301]   
Аэрогидродинамика технологических аппаратов (1983) -- [ c.210 , c.213 , c.215 ]



ПОИСК



Вводы



© 2025 Mash-xxl.info Реклама на сайте