Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Растекание струи

Поэтому, рассматривая выравнивание поля скоростей или раздачу по сечению набегающей узкой струм с помощью плоских решеток, следует точно указывать, что имеется в виду — выравнивание потока (растекание струи) по их фронту или по сечениям на конечном расстоянии за ними. Для толстостенных решеток этого делать не нужно, так как степень выравнивания скоростей или растекания узкой струи практически одинаковая как по их фронту, так и по сечениям на конечном расстоянии за ними.  [c.77]


Если распределительные устройства устанавливают специально для выравнивания потока в аппарате, то интерес представляет результат, получаемый в сечениях на конечном расстоянии за этими устройствами. Если распределительные устройства являются одновременно и рабочими элементами аппарата или объектами обработки, то наиболее важной является степень растекания потока по их фронту. Следовательно, в общем случае необходимо определить степень растекания струи (выравнивания потока) как по фронту распределительного устройства, так и в сечениях на конечном расстоянии за ним. Чтобы облегчить решение этих задач, примем следующую классификацию возможных видов неравномерности потока.  [c.78]

В случае, если распределительное устройство представляет собой плоскую (тонкостенную) решетку и она предназначена для равномерного распределения скоростей по сечению в условиях полной неравномерности набегающего на нее потока, требуется определить, в каких пределах допустимо применение такой одиночной решетки и какова связь между степенью растекания струи в конечном сечении за решеткой и коэффициентом ее сопротивления.  [c.79]

Растекание струи до бесконечности возможно только при установке решетки в неограниченном пространстве (рис. 3.4, а). Если решетка находится в трубе (канале) конечных размеров (рис. 3.4, б), структура потока за ней будет иная. Так, например, в случае центрального (фронтального) набегания жидкости на решетку в виде узкой струи, последняя, растекаясь радиально и достигая за решеткой стенок трубы (канала), неизбежно изменит свое направление на 90° и дальше будет перемещаться вдоль стенок в виде кольцевой струи. При этом в центральной части сечения за решеткой поступательная скорость будет равна нулю. В условиях реальной (вязкой) среды, вследствие турбулентного перемешивания, жидкость, подходя к стенкам трубы (канала), будет увлекать за собой неподвижную часть жидкости из центральной части сечения (рис. 3.4, б). На освободившееся место из более удаленных от решетки сечений будут поступать другие массы жидкости, и, таким образом, в центральной части сечений за решеткой возникнут обратные токи, а профиль скорости за решеткой по сравнению с начальным профилем струи (до решетки, рис. 3.5, а) будет иметь перевернутую форму (см. рис. 3.4, б, а также 3.5, б).  [c.81]

Поток в аппарат может быть введен противоположно направлению потока в рабочей камере, например через подводящий участок в виде отвода или колена с выходным отверстием, повернутым вниз (рис. 3.7). В этом случае струя на входе в аппарат направлена к днищу (или на специальный экран), по которому растекается радиально. Поток, поворачиваясь вдоль стенок аппарата на 180°, пойдет вверх в виде Кольцовой струи. При радиальном растекании струи площадь ее сечений быстро возрастает, и соответственно скорость падает. Поэтому в случае центрального подвода жидкости, направленного к низу аппарата, когда образуется кольцевая струя, будет обеспечено значительное растекание ее по сечению уже на подходе(к(рабочей камере даже без каких-либо распределительных устройств (см. рис. 3.5, а, 3.6, а и 3.7, а). Оставшаяся неравномерность профиля скорости будет иметь при этом характер, противоположный тому, который устанавливается при центральном подводе струи вверх аппарата, а именно максимальные скорости будут вблизи стенок, а минимальные (или отрицательные ) — в центральной части камеры.  [c.85]


Постепенность растекания струи по сечениям насыпного слоя должна. иметь. место, конечно, при толщине слоя с коэффициентом соиротивления,  [c.89]

Вместе с тем, как было отмечено и из сравнения фор.мул (4.28) и (4.29), степень растекания струн перед любой решеткой всегда меньше, чем в сечениях за тонкостенной решеткой (по данной теории в пределах р<2) или за объемной, в которой возможно перемешивание струек (например, слоевых, поперечных пучков труб и т. п.). Поэтому для получения одной II той же степени растекания струи по сечению в случае решеток с изолированными проходными каналами требуется большее значение Ср, че.м в случае тонкостенной решетки (сетки), слоевой насадки, поперечного пучка труб или других подобных распределителей потока. Как будет показано, это хорошо подтверждается опытными данными.  [c.99]

При полном растекании струи по сечению 2—2, когда площадь струи в этом сечении становится равной площади сечения канала = Р ), очевидно, средняя по сечению струи скорость анз будет равна средней по сечению канала скорости г 2 = = 1- В этом случае на основании  [c.103]

Растекание потока по фронту решетки. Если согласно приведенной теории при р = 4 за решеткой достигается полное растекание струи по сечению 2—2 и при 5р > 4 скорости становятся отрицательными, то легко убедиться, что степень растекания струи по фронту решетки с увеличением р будет непрерывно расти. Действительно, решим уравнение (4.44) относительно при этом для простоты предположим, что в границах струи за решеткой профиль скорости равномерен, т. е. = — Уо = 1- Тогда окончательно  [c.105]

При полном растекании струи по фронту решетки, когда Ер = Е  [c.105]

Из сопоставления формул (4.53) и (4.64) также следует, что для получения одной и той же степени растекания струи непосредственно по фронту решетки любого вида и за плоской решеткой (в данном случае теоретически при Ср < 4), а также за такими объемными решетками, как слоевые насадки, пучки труб и т. и., величина должна быть различной для фронта плоской решетки большая для конечных сечений за любой решеткой меньшая.  [c.106]

При этом рр > Ро, так как согласно уравнению Бернулли статическое давление возрастает при торможении потока, т. е, при уменьшении скорости, вызванном растеканием струи.  [c.106]

Опыты показывают, что при определенных значениях и отношениях площадей < Рк/Ро при которых еще нет полного растекания струи по всему фронту решетки, статические давления в струе до растекания и в конечном сечении за решеткой также имеют близкие значения, которые тем ближе, чем больше отношение Поэтому можно принять  [c.107]

В приведенных выводах это обстоятельство не учитывалось, т. е. принималось, что струя набегает на решетку нормально к ее поверхности. Кроме того, растекание струи по фронту решетки, так же, как и в сечениях за ней, не происходит равномерно монолитность струи в сечении р—р решетки или /—/, как показывают опыты, сильно нарушается. Все это объясняет, почему приведенные в данной главе формулы расчета растекания струи как по фронту решетки, так и по сечению 2—2 далеко за ней, не достаточно хорошо согласуются с опытными зависимостями. Особенно это касается случаев большой неравномерности. В том, что формулы расчета растекания по фронту самой решетки не везде справедливы, можно убедиться на основе следующих соображений.  [c.107]

С помощью этой формулы, связывающей степень растекания струи = Рр Рк по фронту решетки и ее коэффициент сопротивления, можно решить поставленную в предыдущей главе вторую задачу. Все величины, входящие в подкоренное выражение зависимости (4.80), в постановке данной задачи являются заданными, при этом коэффициент зависит от вида решетки, формы ее элементов, коэффициента живого сечения и др.  [c.109]

Величина бро зависит от коэффициента сопротивления решетки и отношения площадей Р, 1Ро- Как будет показано опытами (см. гл. 7), в условиях неполного растекания струи по решетке, при  [c.109]

Характер сопротивления участка с внезапным расширением при наличии решетки (см. рис. 4.5) сложнее, чем это кажется на первый взгляд. Вследствие растекания струи перед решеткой происходит уменьшение скорости, а следовательно, потеря количества движения. Поэтому потерю давления до решетки следовало бы подсчитывать по формуле удара при внезапном расширении, но при. малом расстоянии решетки от начального сечения набегающей струи потери на удар не могут полностью реализоваться и истинные потери должны получиться меньше, чем при обычном внезапном расширении.  [c.112]


Как отмечалось в гл. 3, в случае системы последовательно установленных решеток растекание струи по ним происходит постепенно, и степень неравномерности струи в пределах площади растекания по каждой -й решетке получается сравнительно небольшой. Это позволяет для многих практических случаев принять Л р1 = N 2 = Л рг 1- Тогда окончательно  [c.115]

Полное растекание струи на все сечение аппарата происходит на расстоянии от входа, примерно равном ЗВ (или 120 ), а от оси выходного  [c.148]

Различие коэффициентов сжатия струек при входе в отверстия или каналы того или иного вида решеток должно сказываться слабее, если это сжатие меньше влияет на общий коэффициент расхода всей решетки или (что то же самое) на общий коэффициент ее сопротивления. Если для плоской (тонкостенной) решетки коэффициенты сжатия и расхода практически совпадают, то для утолщенной или трубчатой решетки с относительно длинными продольными трубками коэффициент сжатия обусловливает только часть сопротивления, а следовательно, только частично влияет на общий коэффициент расхода. Такие решетки должны обеспечивать при одинаковом коэффициенте сопротивления p большую степень растекания струи по фронту, чем плоская (тонкостенная) решетка или сочетание плоской и ячейковой решеток и, тем более, чем ячейковая решетка с острыми входными кромками. (Вместе с тем при утолщенных, ребристых или трубчатых решетках эффект подсасывания ускоренными струйками струек с меньшими скоростями в сечениях за решеткой при очень малых величинах / может привести к дополнительному увеличению неравномерности распределения скоростей в конечных сечениях за ними.) Растекания струи перед фронтом и внутри слоевой решетки (насадки) будет рассмотрено дальше.  [c.168]

Коэффициент расхода через отверстия решетки уменьшается от центра к периферии. Частично это поясняет, почему в выражении (4.71) и других при величине p множитель kiфронту решетки, что равносильно уменьшению коэффициента сопротивления решетки. Кроме того, радиальное растекание потока за тонкостенной решеткой при р< цр, т. е. до образования перевернутого профиля скорости должно в реальных условиях при Вязкой жидкости происходить медленнее, чем в случае идеальной жидкости. Действительно, пока значения Ср не очень велики, основная масса струи проходит через центральную часть решетки, мало отклоняясь от оси, со скоростью, значительно превышающей скорость отклонившейся  [c.168]

Рис. 7.11. Зависимость степени растекания струи по решетке от коэффициента сопро Рис. 7.11. <a href="/info/147289">Зависимость степени</a> растекания струи по решетке от коэффициента сопро
Растекание струи по фронту решетки. О реальной структуре потока при боковом входе в аппарат без распределительных устройств можно судить по профилям скорости в различных сечениях (рис. 7.14). Она полностью соответствует рассмотренной схеме (см. рис. 3.6). В частности, даже на расстоянии Я/Я > 3 полного выравнивания поли скоростей еще не происходит.  [c.177]

Г ассмотренное течение жидкости в аппарате с боковым входом справедливо для случая, когда решетка достаточно удалена от оси входной струи. При близком расположении решетки относительно струи, когда между ними не остается достаточного пространства для полного растекания струи по фронту решетки в обратную сторону (от задней стенки к передней), указанного перевертывания профиля скорости не произойдет. В этом случае струйки, вытекающие из отверстий плоской решетки, будут иметь то же направление, что и струя на входе в аппарат, вследствие чего при достаточно больших значениях решетки жидкость за ней будет перетекать к задней стенке, и вблизи нее скорость струек будет максимальной (рис. 3.6, г). Очевидно, что при некотором среднем (оптимальном) значении относительного расстояния решетки от оси входного отверстия в сечениях за решеткой установится промежуточный почти симметричный профиль скорости (рис. 3.6, д).  [c.85]

Поскольку одна плоская решетка без дополнительных устройств не всегда достаточно эффективна при использовании ее в качестве распределительного устройства, возникает необходимость в других способах выравнивания потока. Одним из способов является последовательная установка системы плоских решеток, каждая из которых имеет меньший коэффициент сопротивления, чем необходимый коэффициент сопротивления при одной решетке. В этом случае растекание струи будет происходить постепенно от одной решетки к другой (рис. 3.10, а), что исклюйает возможность новой деформации потока вследствие перетекания жид1сости из  [c.87]

Растекание струи за решеткой. При полной неравномерности (неод нородности) потока, когда в сечении на конечном расстоянии перед решеткой имеется только одна трубка тока (узкая струя), в то время, как в остальной части сечения скорость равна нулю, или, иначе, когда 02 = = й)р2 = гг>02 == 22 = о (рис. 4.5), после отбрасывания вторых индексов в формулах (4.30) и (4,31)  [c.102]

Как уже отмечалось в гл. 3 и как показывают опыты (см. ниже), распределение скоростей на конечном расстоянии за рещеткой (сечения 2—2) не получается равномерным даже при полном растекании струи по этому сечению, тогда и в этом случае коэффициенты неравномерности больше единицы, т. е. уИг > 1 ч Л 2к > 1 Оптимальный коэффициент сопротивления решетки получится при минимальных значениях Л42к и Л о  [c.103]


Для пространственных решеток, например типа хонейкомба, полученные формулы позволяют определять значения потребных или оптимальных коэффициентов сопротивления независимо от того, требуется ли чтобы растекание струи происходило по фронту этих устройств или в конечных сечениях за ними. При плоской же решетке эти формулы верны только для расчета растекания струи по ее фронту.  [c.111]

Для оценки влияния неравномерности распределения скоростей по сечению аппарата на его технологические характеристики, как было показано, необходимо знать коэффициент неравномерности, характеризуемый коэффициентом количества движения. Если в качестве такого коэффициента Мрн примем отношение количества движения по средней скорости Шр в сечении растекания струи Ер непосредственно за решеткой, т. е. pWpFp, к количеству движения по средней скорости в сечении аппарата (канала) pwlFк (а практически такое отношение допустимо принять), то с учетом уравнения неразрывности  [c.111]

Распределение скоростей непосредственно по отверстиям рещеток могло бы дать наиболее точное представление о степени растекания струи по ее фронту, однако ввиду малости отверстий, поджатия в них струек и неравномерности распределения скоростей по сечению отверстий, а также значительного отклонения большинства струек от направления оси отверстий непосредственное измерение скоростей потока в них с помощью трубки Пито не представлялось возможным. Поэтому соответствующие измерения производились с помощью цилиндрической трубки, перекрывающей полностью своим торцом поочередно каждое отверстие решетки. Очевидно, при этом измерялось полное давление р,1 в отверстиях. Так как при истечении струйки из отверстия в тонкой стенке в бoльшoii объем полное давлеппе практически равно динамическому в наиболее сжатом сечении, то при этом измерении можно было вычислить скорость в сжатом сечении  [c.161]

Если бы коэффициенты сжатия струек во всех отверстиях решетки были одинаковыми, то при постоянном диаметре с1птп полученное таким образом распределение скоростей соответствовало бы распределению расходов через эти отверстия или средних скоростей истечения из них. Однако, ввиду того, что при растекании струи по фронту решетки линии тока искривляются, углы входа потока в разные отверстия ее получаются неодинаковыми, поэтому коэффициенты сжатия и коэффициенты расхода через разные отверстия решетки также не могут иметь одинаковых значений. Следовательно, даже при равных полных давлениях во всех отверстиях расходы и соответственно средние скорости истечения из них в данных условиях не могли полностью совпасть. Но так как учесть это несовпадение было практически невозможно, то коэффициент сжатия для всех отверстий принимался одинаковым по всему фронту решетки.  [c.161]

Растекание струи по фронту решетки. По диаграммам распределения скоростей (см. табл. 7.1, 7.2) можно видеть, что первонач.альный профиль скорости иа выходе из подводящего участка также неравномерен (см. первый столбец при ц, 0). В не.м имеется завал слева, соответствующий отрыву потока при повороте па 90 в подводяще.м отводе, и максиму.м скоростей, смещенный относительно оси симметрии вправо. Это смещение максимума скоростей наблюдается при всех значениях решетки. Из табл. 7.1 видно, что при малых коэффициентах сопротивления решетки, примерно до = 4, узкая струя с описанным первоначальным характером профиля скорости, набегая на решетку и растекаясь по ней, расширяется так, что скорости во всех точках падают, при этом монолитность струи в целом еще не нарушается, т. е. струя проходит через решетку одним центральным ядром (не считая распада ядра на отдельные струйки при протекании через отверстия решетки.)  [c.169]

При Ср = 7- 9 указанная область отрицательных скоростей исчезает главным образом вследствие растекания центральной части струи, но волнистый характер профиля скорости при FJFo > 6 остается до полного выравнивания потока по фронту решетки. В случае FJF( < 6, когда относительное расстояние RJRo от оси до стенок рабочей камеры значительно меньше, чем при больших значениях F,,IF , степень растекания струи не может быть очень большой, а следовательно, перед решеткой вдоль ее фронта не могут образоваться промежуточные зоны с отрицательными скоростями, и профиль скорости будет более монолитным.  [c.170]

Для грубой оценки степени растекания потока i Tp/ K по решетке воспользуемся отношением максимальных скоростей на решетке (рУршах) И на выходе из подводящего отвода (Икотах)- Оче-видно, убывание максимальной скорости на решетке при Я = 0 с увеличением р обусловлено растеканием потока по ее фронту, в какой бы форме это растекание ни происходило. Поэтому отношение скоростей W7p их/и о шах в какой-то мере характеризует степень растекания струи по решетке. Можно принять, что степень растекания потока прямо пропорциональна указанному отношению скоростей (f Tp - o)ai n Р1)п1шх/ 1Уршах или  [c.171]

Растекание струи в сечениях за плоской решеткой. Рассмотренное в предыдущей главе для бокового входа перетекание струи за плоской решеткой (при отсутствии за ней спрямляющего устройстг.а) из области вблизи задней стенки, противоположной входу к передней стенке (см. табл. 7.6), появляется уже при FJF 6, но при больших коэффициентах сопротивления ( р 150). Если Е /Е,, 10, то перетекание начи-  [c.181]

Что касается фронта решетки, то при достаточно больших значениях полное и сравнительно равномерное растекание струи (Мк л 1,2) достигается при любых значениях Нр10ц- Это видно из диаграмм полей скоростей, полученных при наложении на плоскую решетку спрямляющего устройства в виде ячейковой решетки (см. табл. 7.8).  [c.183]


Смотреть страницы где упоминается термин Растекание струи : [c.12]    [c.104]    [c.105]    [c.108]    [c.114]    [c.114]    [c.115]    [c.151]    [c.162]    [c.165]    [c.174]    [c.179]    [c.181]    [c.182]    [c.188]   
Аэрогидродинамика технологических аппаратов (1983) -- [ c.181 , c.185 ]



ПОИСК



433 (фиг. 9.2). 464 (фиг струями

Струя



© 2025 Mash-xxl.info Реклама на сайте