Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Растворенное вещество

Строение твердых растворов на основе одного из компонен-тоз сплава таково, что в решетку основного металла-растворителя входят атомы растворенного вещества. Здесь возможны два принципиально различных случая,  [c.100]

Согласно теории Нернста, к поверхности твердого тела прилегает тонкий слой неподвижной жидкости толщиной 6, в котором происходит диффузия растворяющегося вещества. За пределами этого слоя движение жидкости, увлекающей растворенное вещество, приводит к поддержанию постоянства концентрации во всем остальном объеме раствора. Толщина б получила название толщины диффузионного слоя Нернста. Она зависит только от скорости перемещения диффундирующего вещества  [c.205]


Образование этих частиц приводит к протеканию между ними, водой и растворенными веществами разнообразных реакций, например  [c.370]

Рнс. 4.24. Фазовые диаграммы и коэффициенты распределения для растворенных веществ, которые повышают (а) и понижают (б) точку затвердевания сплава по сравнению с чистым веществом А.  [c.172]

Это уравнение, выражающее значение э. д. с. элемента в зависимости от активности реагирующих веществ и продуктов реакции этого элемента, называется уравнением Нернста. Активность растворенного вещества L равна его концентрации в моль на 1000 г воды (моляльности), умноженной на поправочный коэффициент 7, называемый коэффициентом активности. Коэффициент активности зависит от температуры и концентрации и может быть определен экспериментально, если растворы не слишком разбавлены. Если вещество L является газом, то его активность равна его летучести и при обычных давлениях численно приблизительно равна давлению, выраженному в атмосферах. Активность чистого твердого вещества принята равной единице. Активность таких веществ, как вода, концентрация которых в процессе реакции практически постоянна, также принята равной единице.  [c.33]

СОЛИ В ПРИРОДНЫХ ВОДАХ. В природных пресных водах содержатся растворенные соли кальция и магния, концентрация которых зависит от происхождения и расположения водоема. Вода с высокой концентрацией этих солей называется жесткой, с низкой — мягкой. Мягкая вода обладает большей коррозионной активностью, чем жесткая. Это было обнаружено за много лет до того, как удалось выяснить причину данного явления. Например, оцинкованные баки для горячей воды в Чикаго служили 10—20 лет (в воде оз. Мичиган содержится 34 мг/л Са , 157 мг/л растворенных веществ), в то время как в Бостоне (5 мг/л Са , 43 мг/л растворенных веществ) такие баки выходили из строя через 1—2 года. В жесткой воде на поверхности металла естественным путем откладывается тонкий диффузионно-барьерный слой, состоящий в основном из карбоната кальция СаСОд. Эта пленка дополняет обычный коррозионный барьер из Ре(0Н)2, уже упоминавшийся в начале главы, и затрудняет диффузию растворенного кислорода к катодным участкам. В мягкой воде защитная пленка из СаСОд не образуется. Однако жесткость воды не единственное условие возможности образования защитной пленки. Способность СаСОд осаждаться на поверхность металла зависит также от общей кислотности или щелочности среды, pH и концентрации растворенных в воде солей.  [c.120]

При некоторых условиях эксплуатации котлов на стенках труб со стороны воды образуются отложения оксидов металлов и неорганических соединений. В зоне отложения происходит местный перегрев, сопровождающийся добавочным осаждением из воды растворенных веществ. В результате этого обычно возникают язвы или трубы забиваются, что приводит к еще большему местному нагреву и появлению разрушающего напряжения в трубе. Кроме того, водород, образующийся в результате коррозии железа, может проникать в сталь. Начинается обезуглероживание, которое сопровождается образованием микротрещин вдоль границ зерен и может вызвать разрыв трубы. Разрушения такого типа могут происходить без значительного уменьшения толщины стенки трубы. При отсутствии отложений на трубах котлов подобных коррозионных разрушений не наблюдается [28].  [c.284]


Взаимодействие частиц растворенного вещества и растворителя приводит к изменению их свойств и создается новая система — раствор. Процесс образования растворов энергетически обусловлен. Во-первых, при образовании раствора резко увеличивается энтропия As — энтропия смешения (см. п. 8.2) больше нуля. Во-вторых, при взаимодействии частиц между собой и при образовании комплексов между ними изменяется энтальпия системы АЖ 0.  [c.281]

Физические свойства новой системы.— раствора отличаются от свойств растворителя, так как растворенное вещество, образуя с ним комплексы, понижает его активность и, в частности, всегда понижает упругость его пара (Рауль), а это приводит к изменению температуры кристаллизации и температуры кипения.  [c.282]

Растворы относятся к конденсированным системам (жидкие, твердые) и поэтому силы взаимодействия между частицами растворенного вещества и растворителя, а также силы взаимодействия между частицами самого растворенного вещества достаточно большие. Это приводит к тому, что как бы уменьшается число частиц в растворе, способных самостоятельно перемещаться и участвовать в процессе, т. е. уменьшается активность растворенного вещества. Это можно учесть, введя понятие коэффициента активности у. Тогда активная концентрация, или просто активность, будет равна  [c.283]

Поведение растворенного вещества в растворе определяется его активностью, а не массовой концентрацией, так как растворенное вещество взаимодействует с растворителем, образуя комплексы переменного состава, а его молекулы могут также взаимодействовать друг с другом. Активность растворенного вещества может быть представлена уравнением  [c.319]

Выражение (11.34а) справедливо для газов и растворов весьма малой концентрации (если растворитель является практически непоглощающим), где можно пренебречь взаимным влиянием отдельных частиц среды (между атомами газа или между молекулами растворенного вещества). В пределах справедливости выражения (11.34а) можно, пользуясь им, определить концентрацию поглощающего вещества в растворе.  [c.281]

Таким образом, ускорение в ультрацентрифуге в 400 000 раз больше ускорения свободного падения (эти данные относятся к ультрацентрифугам типа показанной на рис. 3.1). На взвешенные в жидкости молекулы растворенного вещества, плотность отношение массы к объему) которых отличается от плотности окружающей жидкости, будет действовать в пробирке ультрацентрифуги очень большая центробежная сила, стремящаяся отделить их от жидкости. Если же их плотность равна плотности жидкой среды, то отделение не будет происходить.  [c.73]

Для реальных значений коэффициента теплопроводности различных веществ число Прандтля не достигает тех больших значений, для которых мог бы иметь место этот предельный закон. Такие законы, однако, могут быть применены к конвективной диффузии, описывающейся темн же уравнениями, что и конвективная теплопередача, причем роль температуры играет концентрация растворенного вещества, роль теплового потока — поток этого вещества, а диффузионное число Прандтля определяется как Ро = v/D, где Д — коэффициент диффузии. Так, для растворов в воде и сходных жидкостях число Pd достигает значений порядка 10 , а для растворов в очень вязких растворителях — 10 и более.  [c.301]

Оно определяет распределение растворенного вещества в произвольный момент времени, если в начальный момент = О все вещество было сконцентрировано в бесконечно малом элементе объема жидкости в начале координат (М — полное количество растворенного вещества).  [c.328]

Под влиянием молекулярного движения в жидкости взвешенные в ней частицы совершают беспорядочное броуновское движение. Пусть в начальный момент времени н некоторой точке (начале координат) находится одна такая частица. Ее дальнейшее движение можно рассматривать как диффузию, причем роль концентрации играет вероятность нахождения частицы в том или ином элементе объема жидкости. Соответственно для определения этой вероятности можно воспользоваться решением (59,17) уравнения диффузии. Возможность такого рассмотрения связана с тем, что при диффузии в слабых растворах (т. е. при с< I, когда только и применимо уравнение диффузии в форме (59,16)) частицы растворенного вещества практически не взаимодействуют друг с другом, и потому можно рассматривать движение каждой частицы независимо от других.  [c.330]


Утверждение, что А есть постоянная величина, не зависящая от концентрации, нередко именуется законом Бера, который на основании своих измерений поглощения света окрашенными жидкостями также пришел к этому выводу (1852 г.). Его физический смысл состоит в том, что поглощающая способность молекулы не зависит от влияния окружающих молекул. Закон этот надо рассматривать скорее как правило, ибо наблюдаются многочисленные отступления от него, особенно при значительном увеличении концентрации, т. е. значительном уменьшении взаимного расстояния между молекулами поглощающего вещества. Точно так же нередко можно обнаружить зависимость А для растворенных веществ от природы растворителя, что также указывает на влияние окружающих молекул на поглощательную способность изучаемой молекулы.  [c.567]

Эйнштейн рассмотрел также случай, когда оптическая неоднородность вызывается флуктуациями концентрации растворенного вещества, если, разумеется, диэлектрическая проницаемость изменяется с концентрацией. В этом случае  [c.586]

Окружающая среда влияет не только на интенсивность, но и на спектральный состав люминесценции. Например, замена одного растворителя другим может переместить полосу флуоресценции на несколько сотен ангстрем. Причина лежит, по-видимому, чаще всего в том, что при этом меняется степень диссоциации растворенного вещества, а флуоресценции молекулы и иона часто сильно разнятся между собой. Например, молекула акридина флуоресцирует лиловым светом, а ее ион — сине-зеленым. В соответствии с этим акридин в органических растворителях или в щелочной среде светится фиолетовым светом, а в водном растворе или кислой среде — сине-зеленым. Указанные обстоятельства часто затрудняют применение метода люминесценции для целей количественного анализа. Однако нередко это удается обойти путем тщательного предварительного исследования.  [c.756]

Произведение сг характеризует количество молекул растворенного вещества, приходящееся на единицу площади прошедшего пучка. Измеряя поглощение света слоем такого раствора толщиной г и зная /с, можно найти концентрацию раствора с.  [c.100]

Другим примером интенсивного молекулярного рассеяния является рассеяние, возникающее при смешении некоторых жидкостей. В обычных условиях в растворах распределение одного вещества в другом происходит равномерно, так что они представляют собой среду, в оптическом отношении не менее однородную, чем чистые жидкости. Это означает, что распределение концентрации растворенного вещества во всем объеме одинаково и флуктуации концентрации очень малы. Однако существует много комбинаций веществ, которые при комнатной температуре растворяются друг в друге очень плохо, но при повышении температуры их растворимость резко возрастает н при некоторой критической температуре они способны смешиваться в любых соотношениях. Критическая температура смешения характеризует такое состояние с.меси, когда легко осуществимы местные отступления от равномерного распределения, т. е. нарушения оптической однородности, приводящие к интенсивному рассеянию света.  [c.119]

Электронные поперечные сечення рассеяния для сплавов меди с малым содержанием растворенного вещества  [c.168]

При выполнении работы важное значение имеет правильный выбор растворителя и материала окошек для кювет. При изучении водородной связи можно использовать различные растворители, которые удовлетворяют следующим требованиям. Собственный спектр поглощения его не должен перекрываться с полосами поглощения свободных и связанных колебаний О-—Н растворитель должен хорошо растворять исследуемое вещество между его молекулами и молекулами растворенного вещества не должно быть ни химического взаимодействия, ни образования водородных связей влияние растворителя на спектр исследуемого вещества должно быть минимальным. Для этих целей наиболее удобны неполярные растворители, молекулы которых лишены дипольного момента. При изучении водородных связей между молекулами этилового спирта (проводимом в данной работе) в качестве растворителя рекомендуется использовать четыреххлористый углерод.  [c.166]

Количественный анализ растворов по электронным спектрам поглощения основан на зависимости относительной величины интенсивности светового потока, прошедшего через раствор, от концентрации растворенных веществ, определяемой законом Бугера— Ламберта — Бера (3.20). В аналитической практике он используется обычно в логарифмической форме  [c.188]

При образовании твердого pa TBOipa сохраняется решетка одного из элементов и этот элемент называется растворителем. Атомы растворенного вещества искажают и изменяют средние размеры элементарной ячейки растворителя.  [c.101]

Нернст полагал, что электродный потенциал металла возникает в результате обмена ионами между металлом и раствором, но в качестве движущих сил этого обмена ионами Нернстом были приняты электролитическая упругость растворения металла Р и осмотическое давление растворенного вещества я. На этой основе им была создана качественная картина возникновения скачка потенциала на границе металл—раствор и количественная зависимость величины скачка этого потенциала для металлических электродов первого рода от концентрации раствора. Из теории Нернста, в частности, следовал вывод о независимости стан-дартньга ( нормальных ) потенциалов электродов от природы растворителя, поскольку величина электролитической упругости растворения Р, определяющая нормальный (или стандартный) потенциал металла, не являлась функцией свойств растворителя, а зависела только от свойств металла.  [c.216]

На рис. 4.23, а показана небольщая часть фазовой диаграммы бинарного сплава А—В, обогащенного компонентом А. Основы фазовых диаграмм рассмотрены в работе [33]. Вместо плавления и затвердевания при единственной температуре Та сплав, содержащий примесь б в Л и имеющий концентрацию В, в идеальном случае плавится в интервале температур от Ту до 7з. Диаграмма на рис. 4.23, а составлена для растворенного вещества В, которое понижает точку плавления вещества А. Заметим, что обе температуры Ту н Тз лежат ниже точки плавления чистого металла А. При охлаждении сплава состава Ву из области жидкости и при условии, что переохлаждение отсутствует, зарождение твердой фазы начинается при температуре Гь Твердая фаза, появившаяся при этой температуре, имеет состав б] и оставляет жидкость состава Ьу. При дальнейшем охлаждении осаждается большее количество твердой фазы, имеющей состав, который изменяется вдоль линии солидуса. Состав оставшейся жидкости изменяется по линии ликвидуса. При температуре Т твердая фаза имеет состав бз, жидкая — Ьз, а при температуре Тз твердая фаза состава бз находится в равновесии с жидкостью состава бз. До сих пор считалось, что скорость охлаждения бесконечно мала, так что всегда поддерживается равновесный состав. Другими словами, твердая фаза состава б], появившаяся первой, успела диффузионно перейти в состав бз, пока температура падала до Тз. Поскольку диффузия в твердом состоянии всегда медленна, а скорость охлаждения не может быть бесконечно мала, концентрационное равновесие никогда не достигается, в результате чего при температуре ниже Тз состав твердой фазы оказывается между 61 и 63, а жидкость с избытком В не затвердеет окончательно, пока температура не достигнет Т .  [c.170]


Следует отметить, что в однородной системе процесс при постоянных объеме и температуре может быть только неравповесным, так как в противном случае состояние системы полностью определялось бы заданием удельного объема и температуры и никакие процессы в этих условиях протекать не могли (система находилась бы в состоянии равновесия). Реально процессы при неизменных V п Т могут осуществляться, например, при протекании химической реакции в смеси реагирующих друг с другом веществ, при растворении веществ и др.  [c.147]

Добавление к воде этанола приводит к образованию сгустка ме.льчайших газовых пузырьков. Причина этого не столько в уменьшении поверхностного натяжения, ско.лько в следующем явлении. При сближении двух пузырьков, движущихся в жид-1 ости, когда между ними остается очень тонкий слой жидкости, возникает сопротивление их движению. Жидкая пленка между пузырьками может препятствовать их слиянию. В случае чистых Нхидкостей такое сопротивление отсутствует, но оно моя ет появиться при растворении некоторого вещества. Источником указанного сопротивления, по-види.чому, является разница в концентрациях растворенного вещества в прослойке между пузырьками и в основной массе жидкости Д.  [c.117]

На рис. 8.12 приведена фазовая диаграмма воды, в которой тройная точка (нонвариантная система) обладает координатами 7 =273,15 К, /7=610,5 Па. Температура кипения при давлении 1,013 10 Па соответствует 373,15 К. Введение растворенного вещества (второй компонент) увеличивает число степеней свободы и константные точки растворителя начинают смещаться в зависимости от концентрации растворенного вещества. На этой же диаграмме штриховой линией нанесена кривая давления насыщенного пара над водным раствором некоторой постоянной концентрации С = onst. Пересечение штриховой кривой с изобарой р= 1,013 10 Па произойдет при температуре выше 373 К, а с кривой давления пара надо льдом — ниже 273,15 К. Все изменения константных точек могут быть вычислены или определены экспериментально. Для разбавленных растворов они прямо пропорциональны числу молей растворенного вещества. Расчетные уравнения, известные из курса химии [29], приведены ниже.  [c.282]

В насыщенном растворе, концентрация которого определяется только температурой, активность растворенного вещества условно можно принять за единицу, так как оно находится в равновесии со свободной фазой растворенного вещества, и, принимая также 7 = 7нао можно записать отношение  [c.319]

Выбранное стандартное состояние системы или составляющих может оказаться не реализуемым а действительности, гипотетическим состоянием, что, однако, не существенно, если свойства веществ в этом состоянии могут рассчитываться из имеющихся данных (ср. (6.32),. (6.33) и пояснения к ним). О выборе стандартных состояний существуют соглашения, использующиеся обязательно при составлении таблиц термодинамических свойсив индивидуальных веществ и растворов. Для индивидуальных жидких и кристаллических веществ в качестве стандартного состояния принимается их реальное состояние при заданной температуре и давлении 1 атм, для индивидуальных газов — гипотетическое состояние, возникающее при изотермическом расширении газа до бесконечно малого давления и последующем сжатии до 1 атм, но уже по изотерме идеального газа. Стандартным состоянием компонентов раствора выбирается обычно состояние каждого из соответствующих индивидуальных веществ при той же температуре и давлении и в той же фазе, что и раствор (симметричный способ выбора стандартного состояния), либо такое состояние выбирается только для одного из компонентов, растворителя, а для остальных, растворенных веществ, — состояние, которое они имеют в бесконечно разбавленном растворе (асимметричный выбор). В соответствии с этим стандартизируются и термодинамические процессы. Так, стандартная химическая реакция — это реакция, происходящая в условиях, при 1К0Т0рых каждый из реагентов находится в стандартном состоянии. Если, например, реагируют газообразные неш ества, которые можно считать идеальными газами, то в соответствии с (10.17) и уравнением состояния идеально-газовой смеси (3.17) химический потенциал /-ГО вещества в смеси  [c.100]

По условиям устойчивости равновесия всегда ((Э1Л2/с1л 2)г,р>0 и знак производной (dxi/dr) зависит от соотношения плотностей раствора, р, и растворенного вещества, рг. Если рг>р, то концентрация раствора возрастает с удалением от оси вращения. Зная объемные свойства раствора и распределение концентрации его при центрифугировании, можно рассчитать из  [c.158]

Бугер и независимо от него Беер (1852 г.) установили, что поглощение света раствором (в непоглощающем растворителе) пропорционально молекулярной концентрации Сц растворенного вещества, т. е.  [c.281]

Согласно первому закону Ньютона взвешенная молекула стремится остаться неподвижной (или двигаться по прямой с постоянной скоростью), если рассматривать ее движение относительно лаборатории (лаборатория представляет собой достаточно хорошее приближение к системе отсчета, не имеющей ускорения). Молекула в ультрацентрифуге как бы противится бешеному вращению с большой угловой скоростью. Для наблюдателя, покоящегося относительно ротора ультрацентрифуги, молекула растворенного вещества будет вести себя так, как если бы на нее действовала сила M oV, стремящаяся оттолкнуть ее от оси вращения в сторону наружной стенки пробирки, вставленной в ротор центрифуги. Как велика эта сила Предположим, что молекулярная масса растворенного вещества равна 100 000, т. е. что масса М молекулы этого вещества приблизительно в 10 раз больше массы протона  [c.73]

Другой легко осуществимый случай молекулярного рассеяния света наблюдается при исследовании некоторых растворов. В растворах мы имеем дело со смесью двух (или более) сортов молекул, которые характеризуются своими значениями поляризуемости а. В обычных условиях распределение одного вещества в другом происходит настолько равномерно, что и растворы представляют, собой среду, в оптическом отношении не менее однородную, чем обычные жидкости. Мы можем сказать, что концентрация растворенного вещества во всем объеме одинакова и отступления от среднего флуктуации концентрации) крайне малы. Однако известны многочисленные комбинации веществ, которые при обычной температуре лишь частично растворяются друг в друге, но при повышении температуры становятся способными смешиваться друг с другом в любых соотношениях. Температура, выше которой наблюдается такое смешивание, называется критической температурой смешения. При этой температуре две жидкости полностью смешиваются, если их весовые соотношения подобраны вполне определенным образом. Так, например, сероуглерод и метиловый спирт при 40 °С дают вполне однородную смесь, если взято 20 частей по весу сероуглерода и 80 частей метилового спирта. При более низкой температуре растворение происходит лишь частично, и мы имеем две ясно различимые жидкости раствор сероуглерода в спирте и раствор спирта в сероуглероде. При температурах выше 40 °С можно получить однородную смесь при любом весовом соотношении компонент. С интересующей нас точкй зрения критическая температура смещения характеризует такое состояние смеси, при котором особенно легко осуществляется местное отступление от равномерного распределения. Следовательно, при критической температуре смешения следует ожидать значительных флуктуаций концентрации и связанных с ними нарушений оптической однородности. Действительно, в таких смесях при критической температуре смешения имеет место очень интенсивное рассеяние света, легко наблюдаемое на опыте.  [c.583]


В сплавах с очень малой концентрацией растворенного вещества х добавочное сопротивление, обусловленное примесью, должно быть пропорционально концентрации примеси. Иордгейм [49], однако, показал, что у гомогенных твердых растворов (со случайным распределением атомов растворенного вещества в основной решетке) сопротивление оказывается пропорциональным X (1—ж), в случае простых неупорядоченных сплавов, как.  [c.167]

Если введение растворенного вещества приводит к образованию новой фазы, что соответствующим образом отражается на диаграмме состояния системы, то следует ожидать существенного от лоиения концентрационной зависимости сопротивления от обычного параболического вида. Этот вывод, иллюстрируется данными фиг. 8, где пока.гана зависимость сопрот14влепия  [c.168]

Сильное тушение люминесценции обычно наблюдается при увеличении концентрации раствора. Одновременно происходят уменьшение т и деформации электронного спектра поглощения молекул растворенного вещества. Концентрационное тушение является обратимым процессом — выход свечения полностью восстанавливается при обратном разведении концентрированного раствора. Оно связано с возникновением ассоциированных молекул в концентрированных растворах. При увеличении концентрации происходит сближение молекул и их ассоциация. Как правило, ассоци-  [c.180]


Смотреть страницы где упоминается термин Растворенное вещество : [c.171]    [c.279]    [c.309]    [c.282]    [c.282]    [c.284]    [c.281]    [c.331]    [c.586]    [c.168]    [c.170]    [c.214]   
Термодинамика (1970) -- [ c.209 , c.212 , c.240 , c.259 ]



ПОИСК



Адгезия в растворах поверхностно-активных веществ

Адгезия в растворах поверхностно-активных веществ и растворителях

Адсорбция для растворенных веществ

Анодное окисление металлов адсорбции растворенных веществ на поверхности анода

Взаимодействие оеленоводорода с простыми веществами, окислами, безводными солями металВзаимодействие паров -селена в токе инертного газа-носителя или -без него с простыми веществаДействие селеноводорода на водные растворы солей металла

Влияние поверхностно-активных веществ на электроосаждение цинка из растворов сульфата

Влияние размеров и строения частиц органических веществ на их адсорбционную активность на границе ртуть — раствор

Влияние растворенных в воде веществ на гидродинамику барботажного слоя

Влияние состава раствора на проявление органическими веществами ингибирующего наводороживания действия

Классификация растворенных органических веществ городских сточных вод по основным группам

Клеящие вещества, применяемые в виде растворов

Концентрация растворенного вещества

Общая характеристика адсорбции азотсодержащих органических веществ на границе ртуть — раствор

Основные растворители (растворяющие вещества)

Основные растворяющие вещества

Очистные среды на основе растворов щелочных веществ и ПАВ

Переведение веществ в раствор

Переход в пар летучих примесей хозяйственно-бытовых сточных Исследование состава растворенных органических веществ в процессе дистилляции хозяйственно-бытовых сточных вод

Пленкообразующие вещества растворы

Поверхностно-активные вещества в растворах электрополировани

Приборы для измерения концентрации растворов оптически активных веществ

Распределение растворенного вещества между двумя фазами

Раствор растворяемое вещество

Раствор растворяемое вещество

Растворенные соли и твердые вещества

Растворимость карбоната кальция в воде и водных растворах углекислого гаРастворимость карбоната кальция в растворах других веществ

Растворитель и растворенное вещество

Растворяющие вещества

Регуляторы содержания сухих веществ в пищевых растворах (рефрактометры)

Состояние растворенных веществ



© 2025 Mash-xxl.info Реклама на сайте