Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Излучатели механические

Ультразвуковая обработка металлов. Под ультразвуком понимают такие колебания, частота которых лежит за верхним пределом восприятия органов слуха. Для получения ультразвуковых колебаний применяют различные излучатели — механические, пьезоэлектрические, магнитострикционные.  [c.400]

Приборы, которые служат для получения ультразвуковых колебаний, называются ультразвуковыми излучателями. Существуют излучатели механические и электромеханические. В гальванотехнике наиболее приемлемыми являются электромеханические излучатели, в которых звук получается путем преобразования колебаний электрического тока соответствующей частоты в механические колебания излучателя. Следовательно, для приведения в действие излучателя необходим переменный ток частоты, соответствующей частоте ультразвука, которую желают получить.  [c.139]


Преимущества гидродинамических излучателей — механическая энергия непосредственно превращается в ультразвуковую, чем достигается в процессе облучения хорошее перемешивание  [c.293]

Первое слагаемое есть мощность, рассеиваемая благодаря наличию потерь второе определяет полезную акустическую мощность Рд излучателя. Механическое полезное действие преобразователя характеризуется отношением  [c.162]

Г. Ультразвуками называются звуковые волны с частотами от 2-10 до 10 Гц. Ультразвуки с частотами 10 Гц и выше называются также гиперзвуками. Ультразвуки генерируются механическими и электромеханическими излучателями. Механическим излучателем низкочастотных ультразвуковых волн [у порядка 20—200 кГц) большой интенсивности является сирена. Она звучит благодаря периодическому прерыванию мощной струи сжатого воздуха или пара, проходящего через отверстия в двух соосных дисках, один из которых неподвижен, а другой — вращается.  [c.324]

Рис. 3.10. Комплексный механический импеданс излучателя интерферометра. Рис. 3.10. Комплексный <a href="/info/123741">механический импеданс</a> излучателя интерферометра.
Следует учитывать, что а-активный изотоп и вещество, на котором идет (а, )-реакция, находятся в каком-либо соединении или в механической смеси. Поэтому эмиссия нейтронов-зависит от весового отношения излучателя и вещества, испускающего нейтроны, степени измельчения компонентов смеси, полноты их перемешивания.  [c.223]

В электромеханических излучателях ультразвук создается в результате преобразований колебаний переменного электрического тока соответствующей частоты в механические колебания излучателя. Устройство пьезоэлектрических излучателей основано на пьезоэлектрическом эффекте. Кристаллы целого ряда веществ (кварц, турмалин, титанат бария и т. д.) обладают замечательным свойством.  [c.242]

И напряжения на излучателях удалось снизить транзитный поток до 30 % (рис. 7.11) при снижении максимального теплопритока до 2,7 кВт/м и повышении начальной температуры до 66 °С. Поскольку изменение параметров было незначительным, товарный вид и механические характеристики поверхностного слоя не изменились. Изменение температуры 3 поверхности батона полностью согласуется с изменением теплопритоков для исходного и рационального режимов.  [c.165]


Работа прибора основана на определении комплексного коэффициента отражения электромагнитной энергии от полупроводниковой структуры, находящегося в функциональной зависимости от параметров структуры. При контроле в волноводе изменяются фаза и амплитуда стоячей волны. Изменение фазы определяют с помощью специального устройства, имеющего на выходе электронно-лучевую трубку. Компенсация фазовых изменений, вносимых образцом, производится механическим фазовращателем, положение ручки которого при компенсированной фазе показывает реактивное сопротивление измеряемого образца. Стрелочным прибором измеряют амплитуду электромагнитных волн в минимуме и по этому показанию определяют активное сопротивление образца. Размеры щелевого излучателя 4 X X 0,2 мм в 8-миллиметровом диапазоне радиоволн.  [c.251]

Погрешности рентгеновского излучателя связаны с нестабильностью параметров питания (напряжения и тока, формы и длительности импульса), погрешностями фильтрации н изменения характеристик излучения в процессе работы, размерами фокуса и уровнем афокального излучения, неоднородностью распределения излучения в рабочем телесном угле, нестабильностями излучения, вызванными внутренними процессами рентгеновского источника, механическими н тепловыми нагрузками на источник в процессе сканирования, вибрациями отдельных элементов излучателя и т. п.  [c.450]

С целью вывода выражения для поля приема согласно (1.9) определим излучение точечного источника, расположенного в точке В р (С) = р (В) К ехр Цkr с)IQ rвс), где р (В) — давление излучателя К — величина, пропорциональная его площади. В процессе преобразования механических колебаний в электрические в преобразователе происходит усреднение сигнала, принимаемого различными точками С  [c.74]

Теневой метод применяют вместо эхо-метода при исследовании физико-механических свойств материалов с большими коэффициентами затухания и рассеяния акустических волн, например, при контроле прочности бетона по скорости ультразвука. Для этой цели применяют не только теневой метод, но и (в более общем виде) метод прохождения. Например, излучатель и приемник располагают с одной стороны изделия на одной поверхности и измеряют время и амплитуду сквозного сигнала головной или поверхностной волны.  [c.102]

Материал концентратора должен обладать высоким коэффициентом отражения, достаточной механической п термической прочностью, устойчивостью к воздействию окислителей и коррозии, а также согласованностью спектральной характеристики отражения со спектральной характеристикой излучателя.  [c.286]

Такое же противоречие между задачами повышения точности и быстродействия часто получается и при анализе аппаратурного решения. Например, описанная выше компенсационная схема с вибрирующими излучателями обладает высокой статической точностью, однако ее динамические свойства проигрывают из-за наличия механической следящей системы. Значительного повышения быстродействия (до десятых долей секунды) можно добиться улучшением самой следящей системы, например введением нелинейных обратных связей и т. п. Однако существование в измерительном тракте механической следящей системы все же накладывает определенные ограничения. Поэтому последнее время большое внимание уделяется созданию методов, не требующих введения в измерительный тракт механической следящей системы и поэтому обладающих повышенной динамической точностью. Рассмотрим некоторые из них.  [c.318]

Прибор состоит из излучателя (ОКГ), приемника отраженного излучения, механических систем крепления и наведения излучателя и приемника излучения и измерительного блока.  [c.217]

Перед началом контроля проверяют соосность центра входной поверхности преобразователя рентгеновского изображения и выходного окна рентгеновской трубки с помощью оптического или механического центратора (рис. 5.56), Настройку рентгенотелевизионной установки производят на оптимальный режим и параметры просвечивания по эталону чувствительности ГОСТ 7512—82 при этом добиваются наибольшего числа видимых на видеоконтроль-ном устройстве изображений канавок или проволочек эталона чувствительности. Расстояние от поверхности контрольного тест-образца, обращенной к источнику, до выходного окна рентгеновского излучателя устанавливают не менее 150 мм.  [c.550]


Рис, 5.56. Схемы проверки соосности рентгеновского излучателя и преобразователя оптическим а и механическим б центратором  [c.551]

Щуп через тонкий слой машинного масла передает звуковые колебания трубе. Ультразвуковой луч направленно пронизывает трубу, претерпевая на своем пути многократные преломления. Он перемещается по трубе до тех пор, пока не встретит на пути границу отражения, которой могут быть подкладное кольцо сварного шва, неровности нижнего корневого валика при сварке труб без подкладных колец или дефект в сварном шве или в самой трубе. Отразившись от границы раздела, луч возвращается обратно в излучатель и вызывает колебание пластинки титаната бария. Проявляется обратный пьезоэлектрический эффект механические колебания пластинки преобразовываются в электрические. Они передаются в приемный усилитель, а затем поступают на экран электроннолучевой трубки,  [c.230]

Основными источниками ультразвуковых колебаний являются механические и электромеханические излучатели.  [c.176]

Механические излучатели применяются в основном для возбуждения звуковых и ультразвуковых колебаний в воздухе или в газообразной среде. Они просты по кон-  [c.176]

В электромеханических излучателях ультразвуковые колебания генерируются за счет преобразования электрической энергии в механическую. Электромеханические источники позволяют получать ультразвуковую энергию высокой частоты и устойчиво работают, как правило, в очень узкой полосе частот. По принципу преобразования энергии электромеханические излучения делятся на магнитострикционные, пьезоэлектрические и электродинамические.  [c.177]

Основной метод получения ультразвука — преобразование тем или иным способом электрических колебаний в механические. В диапазоне ультразвука низкой частоты 15... 100 кГц нашли применение излучатели ультразвука, использующие эффект магнитострикции в никеле, в ряде специальных сплавов и в ферритах. Для излучения ультразвука средних и высоких частот (f>100 кГц) используется главным образом явление пьезоэлектричества. Основными материалами для излучателей служат пьезокварц, ниобат лития и др.  [c.617]

Механическая колебательная система служит для преобразования электрической энергии в механическую, передачи этой энергии в зону сварки, концентрирования этой энергии и получения необходимой величины колебательной скорости излучателя.  [c.420]

Магнитострнкционные материалы. Основными характеристиками магнитострикционных материалов (см. табл. 27.32), применяющихся для изготовления магнитострикционных преобразователен, являются коэффициент магнитомеханической связи К, квадрат которого равен отношению преобразованной энергии (механической или магнитной) к подводимой (соответственно магнитной или механической), динамическая маг-гщтострикционная постоянная a=(da/dS)s и маг-ьитострикционная постоянная чувствительности Л= ((ЗВ/а)где а — механическое напряжение, Я/м , В — магнитная индукция, Тл, а индексы и Я означают неизменность деформации и магнитного поля. Величина а существенна для работы излучателей, а Л — для работы приемников. Плотность р и модуль Юнга Е определяют резонансную частоту преобразователей от механической прочности, магнитострикции насыщения X и индукции насыщения Вь зависит предельная интенсивность магнитострикционных излучателей механическая добротность Q, удельное электрическое сопротивление р.-,л и коэрцитивная сила Не определяют потери энергии на вихревые токи и гистерезис при работе преобразователя. Значения К, а, Л существенно зависят от напряженности подмагничивающего поля, значение которого Яопт, отвечающее максимуму К, обычно называют оптимальным.  [c.615]

Для реализации всех методов анализа распространения упругих колебаний необходимо иметь излучатель механических колебаний (вибратор) и индикатор, воспринимающий механические колебания испытуемой среды. Ультразвуковые колебания излучаются и принимаются от испытуемого объекта при помощи пьезоэлектрических пластин из кварца, тита-ната бария, сульфата лития и других материалов, преобразующих электрические колебания в упругие колебания той же частоты и обратно.  [c.548]

Рассмотрим цилиндрический акустический интерферометр с площадью поперечного сечения А, заполненный газом со средней плотностью р, в котором скорость звука равна с. Обозначим акустический коэффициент затухания через а, длину волны — через Л, волновое число к=2п1Х и / г и Нг — коэффициенты отражения соответственно отражателя и излучателя, которые в общем случае могут быть комплексными. Сумма механического импеданса излучателя Zt и газа ZL(l) составляет полный импеданс Z(l), где I — длина полости, поскольку и сам излучатель, и газовый столб влияют на величину скорости.  [c.102]

Установление сериальных закономерностей, связь между сериями (принцип Ритца), универсальность постоянной Ридберга — всё свидетельствовало о глубоком физическом смысле открытых законов. Тем не менее, попытки установить на основании этих законов внутренний атомный механизм, обусловливающий найденные закономерности, потерпели решительную неудачу. Было ясно, что каждая серия полностью вызвана одним и тем же механизмом. Между тем трудно представить себе возможность излучения целого ряда частот таким простым атомом, как, например, атом водорода. Известны, конечно, типы механических излучателей, дающих ряд колебаний, например струна. Однако спектр такого излучателя состоит из основной частоты и ее обертонов, представляющих целые кратные от основной, даже отдаленно не напоминая закономерностей, наблюдаемых в спектральных  [c.717]


Однако соблюсти это требование было бы трудно — излучатели оказывались бы чересчур громоздкими, и для того, чтобы усилить излучение, применяют иные методы. Камертон, например, устанавливается на ре-зонаторный ящик. Вследствие механической связи О стенок ящика со стеблем камертона возникают ко- 471  [c.739]

Для получения ультразвуков обычно используют механические, пьезоэлектрические или магнитострнкционные излучатели. Простейший механический излучатель — всем известный свисток. В нем звук возбуждается за счет того, что струя воздуха разбивается о внутренний край полости свистка. Периодически возникающие при этом вихри и возбуждают колебания столбика воздуха, находящегося в полости свистка. Размеры полости определяют частоту собственных колебаний столбика воздуха, а следовательно, и частоту излучаемого звука. Чем меньше размеры полости, тем выше звук. Уменьшая размеры полости, можно добиться того, что свисток начнет издавать звуки очень большой частоты, т. е. ультразвуки.  [c.242]

Е ростейший магнитострикционный излучатель — это, например, никелевый стержень, вставленный внутрь катушки, по обмотке которой пропускается переменный ток. В катушке возникает при это.м переменное магнитное поле и стержень в такт с его колебаниями периодически то сжимается, то расширяется, т. е. совершает механические колебания.  [c.243]

В качестве граничного условия на бесконечности при наличии вакуума обычно принимаются условия, которые выводятся из требования существования лишь уходящих в бесконечность волн. Если электропроводное тело является бесконечным, таким условием будет обращение на бесконечности в нуль электромагнитного поля от любой системы излучателей, лежащих целиком внутри некоторой конечной области. В качестве начальных механических условий обычно задают вектор перемещений и н скорость ди д1. В задачах магнитоупругости, в которых необходимо учесть тепловой нагрев, соответствующие уравнения решаются при заданных магнитных, механических, а также температурных условиях на границе. Начальные тепловые условия состоят в задании температуры Т при t =Q. Граничные условия на поверхности тела при конвективном теплообмене с внешней средой имеют вид  [c.257]

Погрешности коллимации включают в себя погрешности юстировки, по-греншости, вызванные конечной толщиной и шириной пучка, погрешности непараллельности геометрии пучка и плоскости сканирования, расходимости или сходимости пучка, погрешности, вызванные рассеянным излучением, так называемые коллимационные шумы, вызванные механическими и тепловыми нагрузками на элементы рентгенооптики в процессе сканирования и недостаточной жесткостью связи между узлами излучателя, коллиматоров и детекторов, погрешности дополнительных элементов рентгенооп-тнки (выравнивающих клиньев, регулировочных образцов, управляемых диафрагм и т. п.).  [c.450]

УЗ-пучок, распространяющийся от излучателя к приемнику, тем самым снижая амплитуду прошедшего сигнала. Для повышения надеж1 ОС7 и и производительности контроля используют механические устройства. Они позволяют изменять расстояние между ПЭП, обеспечивают их центровку относительно стержней и друг друга, а также постоянный, не зависящий от оператора акустический контакт. Для создания акустического контакта между ПЭП и стержнем до последнего аременк применяли звуко-проводяш,ий смазочный материал густой консистенции. Весьма перспективны ПЭП с магнитным удержанием жидкости.  [c.344]

Механическая часть установки обеспечивает сканирование излучательно-приемного тракта относительно поверхности изделий. Основными элементами механической части являются центральный вал 8, на котором закреплены штанга 9 с излучателем 10, штанга 15 с приемником 16 и штанга 7 с фотомодуляционной. лампой 5. При этом излучатель и приемник установлены таким образом, чтобы их оптические оси совпадали. Центральный вал 8 приводится в движение при помощи реверсивного механизма 1 и электромотора 17. Угол поворота центрального вала определяется длиной штанг 5 и /5, а также габаритами контролируемого изделия. В момент выхода оптической оси излучательно-приемного тракта за пределы контролируемого изделия с блока автоматического управления 2 поступает импульс, который запускает  [c.89]

Автоматизация контроля происходит путем последовательного подведения участков обследуемого изделия к излучателю при помощи механических сканирующих устройств. Механическое сканирование осуществляется за счет возвратно-поступательного движения и построчного сдвига обследуемого изделия или аналогичного перемещения приемоизлучающей системы. Выбор схемы сканирования зависит от формы и вида обследуемого изделия. В случае фиксации дефектограмм на фотопленку или фотобумагу в качестве оконечного каскада фиксирующего устройства используется усилитель постоянного тока. Нагрузкой оконечного каскада служит точечная газосветная лампа, интенсивность свечения которой меняется пропорционально амплитуде принятого сигнала. Полученная таким образом фотография показывает распределение интенсивности энергии микрорадиоволн за контролируемым изделием, по ней можно судить о качестве изделия.  [c.135]

А4агнитно-мягкие ферриты обладают всеми механическими свойствами керамики. Они тверды и хрупки, при спекании дают усадку от 10 до 20 % и совершенно не допускают обработку резанием. Ферриты хорошо шлифуются и полируются абразивными материалами. Для точной доводки размеров и для разрезания ферритовых изделий следует применять алмазные инструменты. Склейку следует производить клеем БФ-4 по общепринятой технологии. Поверхности можно спаивать оловянньпйи припоями при условии предварительного ультразвукового лужения их оловом (паяльник одновременно должен являться излучателем ультразвука). При расчете изделий из ферритов можно принимать следующие усредненные значения их механических и тепловых параметров модуль упругости на сжатие 150 ГПа коэффициент линейного расширения 10" 1/1 °С коэффициент теплопроводности  [c.190]

Ультразвуковая дефектоскопия (УЗД) - один из наиболее эффективных методов неразрушающего контроля. Дефектоскопия основана на принципе передачи и приема ультразвуковых импульсов, отражаемых от дефекта, расположенного в металле. Высокочастотные звуковые воЛны распространяются по сечению контролируемой детали или узла направлешо и без заметного затухания, а от противоположной поверхности, контактирующей с воздухом, полностью отражаются. Для возбуждения и приема колебаний используются прямой и обратный пьезоэлектрический эффекты титаната бария (кварца). Генератор электрических ультразвуковых колебаний возбуждает пьезоэлектрический излучатель (передающий щуп), который через слой жидкости связан с поверхностью детали. Механические колебания, полученные от действия переменного магнитного поля на пьезоэлектрическую пластинку излучателя, распространяются по толще металла и достигают противоположной стороны сечения. Отражаясь, возвращаются и через жидкую среду возбуждают в пьезоэлектрическом приемнике (приемном щупе) электрические колебания, которые после усиления высвечивают на индикаторе характер прохождения колебаний. Если препятствий, мешающих прохождению колебаний, не оказалось, амплитуды прямого и отраженного импульсов одинаковы. При наличии дефекта импульсных пиков будет три, причем отраженный от дефекта - меньший (рис. 4.4). Во время работы дефектоскопа колебания возбуждаются не непрерывно, а короткими импульсами. Существует несколько тапов дефектоскопов и наборов щупов.  [c.157]

В промышленных и топочных установках используют форсунки не только с одним способом распыливания, но и комбинированные, в которых топливо распыливают, применяя различные виды энергии одновременно или последовательно. При работе таких форсунок на одних режимах распыливание производится по одной схеме, а на других — по другой. Часто применяют комбинированные паро- и пневмомеханические форсунки, в которых при малых расходах для распыливания топлива используют пар или воздух, а на номинальной нагрузке распыливание осуществляют, увеличивая давление подачи топлива. В комбинированных форсунках с акустическими излучателями при малых расходах топлива распыливание происходит под действием ультразвуковых колебаний воздушной струи при максимальных расходах форсунка работает как механическая. В ротационных форсунках для дробления топлива на капли используется как механическая энергия, получаемая топливом от вращающейся  [c.11]


I руппы — механические н эл.-механические, Механич. излучатели У. (воздушные н жидкостные свистки и сирены) огличаются просготой устройства и эксплуатации, не требуют дорогостоящей электрич. энергии высокой частоты. Их недостатки — широкий спектр излучаемых частот и нестабильность частоты и амплитуды, что не позволяет использовать их для контрольно-измерит. целей они применяются гл. обр. в промышленной УЗ-технологии и частично клк средства сигнализации.  [c.216]

Сплавы с большой магнитострикцией используют в ультразвуковой и гидроакустической аппаратуре для изготовления излучателей, ультразвуковых преобразователей энергии, линий задержки в электрических цепях и электромеханических фильтров. Применение каждого магнитострикцион-ного сплава определяется комплексом магнитных и механических свойств, а также сохранением этого комплекса во всем интервале рабочих температур. Коэффициент магнитной связи к = -Ei/ 2 показывает, какая доля подведенной магнитной или механической энергии Е2 преобразуется соответственно в механическую или магнитную энергию Е (без учета магнитных и механических потерь).  [c.549]


Смотреть страницы где упоминается термин Излучатели механические : [c.47]    [c.68]    [c.290]    [c.70]    [c.216]    [c.100]    [c.565]    [c.190]    [c.190]    [c.626]   
Метрология, специальные общетехнические вопросы Кн 1 (1962) -- [ c.288 ]

Ультразвук и его применение в науке и технике Изд.2 (1957) -- [ c.27 ]



ПОИСК



Излучатели

Механические излучатели (свистки, сирены)



© 2025 Mash-xxl.info Реклама на сайте