Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Течение турбулентное между параллельны

ТУРБУЛЕНТНОЕ ТЕЧЕНИЕ МЕЖДУ ПАРАЛЛЕЛЬНЫМИ ПЛОСКОСТЯМИ (ТЕЧЕНИЕ В ПЛОСКОЙ ТРУБЕ)  [c.364]

Рассмотрим интегральный метод решения уравнений турбулентного пограничного слоя. Течение в пограничном слое условно можно разделить на ламинарный подслой и турбулентное ядро. В ламинарном подслое течение определяется молекулярным переносом, в турбулентном ядре — молярным. Ламинарный подслой моделируем течением между параллельными, в общем случае, проницаемыми плоскостями (течением Куэтта). Примеры решения уравнений, описывающих течение Куэтта многокомпонентного газа, приведены в 8.1. В турбулентном ядре решение определяется приближенно с использованием интегральных соотношений (8.51). .. (8.53). При турбулентном течении вдоль непроницаемой пластины обычно применяется универсальный степенной профиль скорости  [c.286]


ТЕПЛООБМЕН ПРИ ПОЛНОСТЬЮ РАЗВИТОМ ТУРБУЛЕНТНОМ ТЕЧЕНИИ В КАНАЛЕ МЕЖДУ ПАРАЛЛЕЛЬНЫМИ ПЛАСТИНАМИ И В КОЛЬЦЕВЫХ КАНАЛАХ  [c.214]

Теплообмен в кольцевых каналах и в канале между параллельными пластинами (предельный случай кольцевого канала) представляет особенно интересную задачу конвекции, так как появляется возможность несимметричного обогрева стенок канала. Метод расчета теплообмена при ламинарном течении в кольцевых каналах обсуждался в гл. 8. В той же главе рассмотрено применение метода суперпозиции для расчета теплообмена при несимметричном обогреве. Задача расчета теплообмена при турбулентном течении в кольцевом канале может быть решена с помощью описанных методов решения аналогичной задачи для круглой трубы. Появляется только одна новая трудность, связанная с определением отношения касательных напряжений на стенках канала и радиуса, при котором касательное напряжение равно нулю. Эти величины необходимы для определения коэффициентов турбулентного переноса и градиентов скорости на стенках канала. Если задача для ламинарного течения была полностью решена исходя из основных законов сохранения, то аналитические методы решения аналогичной задачи при турбулентном течении являются полуэмпирическими и опираются на опытные данные. Отношение касательных напряжений на стенках кольцевого канала при турбулентном течении можно установить путем экспериментального определения радиуса, соответствующего максимальной скорости в кольцевом канале. Из простого баланса сил, приложенных к контрольному объему, легко показать, что радиус, соответствующий нулевому касательному напряжению и максимуму скорости, однозначно связан с отношением касательных напряжений на стенках канала.  [c.214]

Числа Нуссельта и коэффициенты влияния для полностью развитого турбулентного течения между параллельными пластинами постоянная плотность теплового потока на одной пластине, другая  [c.220]

ТЕПЛООБМЕН В ТЕРМИЧЕСКОМ НАЧАЛЬНОМ УЧАСТКЕ ПРИ ТУРБУЛЕНТНОМ ТЕЧЕНИИ В КАНАЛЕ МЕЖДУ ПАРАЛЛЕЛЬНЫМИ ПЛАСТИНАМИ  [c.231]

Собственные значения и постоянные решения задачи о теплообмене при турбулентном течении между параллельными пластинами термический начальный участок температура одной пластины постоянна, другая пластина теплоизолирована  [c.232]


Следовательно, как и при течении между параллельными плоскими стенками, давление в пограничном слое зависит от среднеквадратичного значения компоненты турбулентной пульсации v. Если ввести массовую силу тяжести и предположить, что она действует противоположно направлению отсчета h, то найдем, что равенство (11-26) имеет место и в последнем случае.  [c.240]

Для трубы кругового сечения лежит между 1600 и 1700. Для течения между параллельными плоскостями турбулентное движение наблюдалось, начиная с R = 1400.  [c.142]

Неустойчивость движения жидкости может проявляться не только в переходе от ламинарного режима к турбулентному, но и в резком изменении макроскопической структуры потока. Например, при движении вязкой жидкости между соосными вращающимися цилиндрами линиями тока могут служить плоские кривые в виде концентрических окружностей (см. п. 8.4). Но при определенных условиях такой характер течения может нарушиться, и в зазоре между цилиндрами возникнут крупные кольцевые вихри с осями, параллельными окружной скорости. Сечения таких вихрей плоскостью, проходящей через ось вращения, показаны на рис. 9.4.  [c.363]

Хотя в принципе эта формула пригодна для всех зон сопротивления, но применяется она главным образом для турбулентных режимов, так как в случае ламинарного течения чаще всего удается получить более удобные расчетные зависимости. Сложные трубопроводы, как указывалось, имеют разветвления. Составим основные расчетные зависимости применительно к схеме параллельного включения нескольких труб между точками разветвления (рис. 92). Для каждой из ветвей значение напора в сечениях А и В одинаково. Следовательно, потеря напора между этими сечениями одна и та же  [c.196]

Однако и до перехода к собственно турбулентному режиму присутствие взвешенных частиц влияет на сопротивление течению жидкости, тормозящей скольжение пластин одна относительно другой. Твердые частицы сужают пространство, занятое струями жидкости, и увеличивают средний градиент скорости поперек потока, действуя так, как если бы зазор между пластинами сузился. Следует также учесть, что при нарушении параллельности движения отдельных частиц жидкости, т. е. при искривлении их траекторий, обмен количеством движения между соседними слоями жидкости, расположенными на разных расстояниях от пластин, усиливается, подобно тому как этот обмен усиливается при настоящем турбулентном режиме. В результате вязкость коллоидного раствора, содержащего взвешенные частички, оказывается повышенной по сравнению с вязкостью чистого растворителя.  [c.61]

Турбулентное течение. Непосредственное взаимодействие осредненного течения и продольного магнитного поля отсутствует из-за параллельности векторов и и В. Магнитное поле взаимодействует с пульсационным движением. При этом поле непосредственно воздействует только на поперечные пульсации и и w подавляя их. На продольные пульсации скорости и поле действует косвенно, через механизм обмена энергией между пульсациями скорости за счет пульсаций давления. В результате продольные пульсации также подавляются полем, хотя и слабее, чем поперечные, так что увеличивается анизотропия распределения энергии между ними. Пространственные корреляции и масштабы пульсаций существенно возрастают вдоль поля, а поперек поля изменяются слабо.  [c.54]

Пример 11-1. Турбулентное течение между плоскими параллельными стенками.  [c.239]

Если жидкость находится между двумя коаксиальными цилиндрами, из которых наружный вращается, а внутренний неподвижен, то, согласно Куэтту , переход ламинарного течения в турбулентное происходит при такой критической окружной скорости и внешнего цилиндра, для которой число Рейнольдса = 1900, при условии, что расстояние (1 = Г2—Г1 между стенками цилиндров мало по сравнению с Г1 и Гг. В случае более широкой щели между цилиндрами, начинает проявлять свое действие упомянутая выше стабилизация, и величина критической скорости сильно возрастает. Наоборот, если внутренний цилиндр вращается, а внешний неподвижен, то течение делается неустойчивым еще в стадии ламинарного движения регулярно возникают вихри с осями, параллельными окружной скорости, вращающиеся попеременно вправо  [c.182]


Изменение распределения скоростей при переходе ламинарной формы течения в турбулентную можно использовать для простого способа определения положения точки перехода (точнее говоря, области перехода). Принцип такого определения пояснен на рис. 16.6. Трубка для измерения динамического давления или трубка Пито устанавливается параллельно стенке на таком от нее расстоянии, на котором ламинарный и турбулентный профили скоростей дальше всего отстоят один от другого. Если теперь передвинуть трубку вдоль стенки, не меняя расстояния между ними, и пропустить ее через область перехода вниз по течению, то она покажет почти внезапное повышение динамического или соответственно полного давления.  [c.420]

Недавно Дж. Т. Стюарт исследовал влияние магнитного поля на переход ламинарной формы течения в турбулентную. Выяснилось, что для ламинарного течения между двумя параллельными плоскими стенками наложение магнитного поля, параллельного плоскости стенок, значительно увеличивает критическое число Рейнольдса.  [c.474]

Оценим поперечный размер у турбулентного следа. Граница между турбулентным и ламинарным течениями и представляет собой границу турбулентного следа. Как мы видели в предыдущем параграфе при рассмотрении затопленной струи, жидкость может только втекать в область турбулентного течения, но не вытекать нз нее. Это означает, что на границе турбулентного следа имеется разрыв линий тока жидкости, аналогичный разрыву, показанному на рис. 12, причем со стороны турбулентной области линии тока параллельны линии границы между турбулентным и ламинарным течениями. Используем это соображение для определения формы границы турбулентного следа.  [c.126]

Чиела НуССельта й коэффициенты влияния при турбулентном течении между параллельными пластинами. Плотность теплового потока на одной стенке постоянна, другая стенка теплоизолирована  [c.233]

Pa MOTipHTe полностью (развитое турбулентное течение между параллельными пластинами. Число Рейнольдса (характерный размер — гидравлический диаметр) равно 5 10. Число Прандтля равно 3. Плотность теплового (потака на одной из пластин постояина, а тепловой поток направлен от стенки к жи1Дкости. Плотность теплового потока на другой пластине (равная плотности теплового потока на первой пластине) также постоянна, но тепловой поток направлен от жидкости к станке. Вычислите и постройте график распределения температуры по пшеречному сечению канала.  [c.241]

Рассмотрите полностью развитое турбулентное течение между параллельными пластинами. Число Рейнольдса равно 10 . Используя приведенные в тексте решения, вычислите числа Нуссельта при течении жидкостей с числами Прандтля, ра вньши 10 н 0,01, для двух случаев 1) по сто-янная плотность теплового потока на одной пластине, другая пластина теплоизолирована 2) постоянные и равные плотности тепловых потоков, направленных к жидкости, на обеих пластинах. Обоудите, каковы различия в характере переноса тепла и раопределении температуры по сечению канала при нагреве одной и обеих стенок. Как число Нуссельта связано с формой профиля температуры  [c.241]

Следует отметить, что вопрос о переходе ламинарного режима течения в турбулентный на сегодня окончательно не решен, несмотря на большое теоретическое и практическое значение. Так, в 1971г. советский ученый В.А.Романов установил фундаментальный факт, что так называемое гшоскопараллельное течение Куэтта (см. подраздел 5.3.2) никогда, ни при каких возмущениях не теряет устойчивости, оставаясь ламинарным при сколь угодно больших числах Рейнольдса. В рассматриваемом случае область течения ограничена двумя параллельными пластинами, между которыми находится вязкая жидкость. Пластины движутся параллельно друг другу с постоянными и противоположными по направлению скоростями, увлекая за собой прилегающие к ним слои жидкости. Устойчивость плоского течения Куэтта носит исключительный характер, привлекая к себе внимание теоретиков и экспериментаторов, т.к. все остальные ламинарные течения вязкой жидкости при некотором значении числа Рейнольдса теряют устойчивость, приобретая турбулентный характер. Турбулентный режим течения является устойчивым. Экспериментально этот факт подтвержден до значений числа Рейнольдса порядка 10 .  [c.85]

Существует большое сходство между пуазейлевским движением в трубе (или движением между параллельными пластинами) и течением в пограничном слое. Похожи не только эпюры скоростей (при радиусе трубы или половине ширины канала, играющих роль толщины пограничного слоя), но и явление неустойчивости ламинарного потока и превращения его в турбулентный при превышении некоторых критических значений чисел Рейнольдса, ставшее хорошо известным для потоков в трубах после фундаментальных опытов Хагена и Рейнольдса. Когда пограничный слой делается турбулентным, беспорядочное движение масс жидкости охватывает все среднее движение и в результате обмен количеством движения между слоями, движущимися с разной скоростью на разном расстоянии от стенки, происходит с большей эффективностью, чем в ламинарном потоке. Этим объясняются большие сдвигающие усилия на стенке, а также тот факт, что при  [c.285]

Рис. 19.3. Распределение скоростей в прямолинейном течении Куэтта между двумя параллельными плоскими стенками, движущимися в противоположные стороны. По Г. Райхардту Р ], [ Ч. При Ре = = 1200 течение ламинарно, при Ре = 2900 и 34 ООО — турбулентно. Рис. 19.3. <a href="/info/20718">Распределение скоростей</a> в прямолинейном <a href="/info/14053">течении Куэтта</a> между двумя параллельными <a href="/info/109669">плоскими стенками</a>, движущимися в противоположные стороны. По Г. Райхардту Р ], [ Ч. При Ре = = 1200 <a href="/info/639">течение ламинарно</a>, при Ре = 2900 и 34 ООО — турбулентно.

Примером течения с постоянным касательным напряжением, особенно простым с точки зрения теории, является так называемое течение Куэтта между двумя параллельными плоскими стенками, движущимися одна относительной другой (рис. 1.1). В этом течении, тщательно исследованном Г. Райхардтом [ ], [ ], касательное напряжение т в точности постоянно как при ламинарном, так и при турбулентном движении и равно касательному напряжению То на стенке. На рис. 19.3 изображены полученные Г. Райхардтом результаты измерений распределения скоростей в течении Куэтта при различных числах Рейнольдса. При числе Рейнольдса Ре< 1500 течение лами-  [c.533]

На графике на рис. 111 представлена зависимость ф от соотношения между диаметрами магистрали и параллельной трубыдля различных режимов течений и законов сопротивления (/ — ламинарное течение, 2 — турбулентное течение в гладких трубах, 5 — турбулентное течение в шероховатых трубах) очевидно, что при di = d независимо от характера течения ф = 0,5, т. е.  [c.208]

Возникающая турбулентность является в большинстве случаев трехмерной. Представляет интерес рассмотреть вопрос,. при каких условиях, достаточно надежных в теоретическом и экспериментальном отношениях, возникающая неустойчивость, обусловленная плоскими поступательными волнами Толлмина, приводит к трехмерной турбулентности. В связи с этим можно предположить, что в относительно вогнутой области ламинарного пограничного слоя, возмущенного нарастающими волнами, возникает при достаточном нарастании вторичная неустойчивость в отношении вихревых трехмерных возмущений с осями, параллельными основному потоку, причем плоское течение скорее всего переходит в ячеистое трехмерное течение. Особенно благоприятные условия для этой вторичной неустойчивости имеют место в зоне, где скорость распространения волн Толлмина соизмерима со скоростью основного потока. Если такая вторичная неустойчивость существует, то расхождение между значением критического числа Рейнольдса нейтральных волн Толлмина и наблюдаемым дальнейшим ростом числа Рейнольдса переходной ламянарно-трубулентной области может быть связано с критическим числом Рейнольдса вторичной неустойчивости.  [c.265]

Турбулентное течение Пуазейля. Как было показано в 6-5, при ламинарном течении между двумя параллельными неподвнх<ными стенками, вызванном перепадом давления в продольном направлении, имеет место параболическое распределение скорости. Двумерное турбулентное течение исследовалось в широких прямоугольных трубах, где вторичные течения, связанные с наличием углов, образуются у боковых стенок, как показано схематически на рис. 13-3.  [c.306]

Наряду с движением вязкой жидкости в круглых цилиндрических трубах Д. Колзом были изучены также и переходные движения в пространстве между соосными вращающимися цилиндрами ). При переходе через некоторое значение рейнольдсова числа устойчивое вначале круговое движение частиц жидкости в плоскостях, перпендикулярных оси вращения, сменяется движением с ячеистой структурой замкнутых вторичных течений, расположенной периодически в направлении, параллельном оси вращения. Такое — его обычно называют тэйлоровским — движение образуется в случае доминирующего вращения внутреннего цилиндра. В случае же доминирующего значения вращения внешнего цилиндра устойчивое круговое движение частиц переходит в спиральное, смешанное ламинарно-турбулентное движение. Эти периодически расположенные в пространстве спирали, сохраняя свою форму и взаимное расположение, вращаются как одно целое вокруг общей оси цилиндров с угловой скоростью, близкой к среднему арифметическому угловых скоростей цилиндров.  [c.527]

В работах [4, 5] было исследовано влияние излучения на теплообмен при течении Куэтта излучающей и поглощающей жидкости, а в [6, 7] рассмотрено течение пробки излучающего и поглощающего газа в канале и полностью термически развитое ламинарное течение между двумя параллельными диффузно излучающими и диффузно отражающими изотермическими бесконечными пластинами. Автор работ [8, 9] исследовал влияние излучения на характеристики ламинарного течения излучающей и поглощающей жидкости с постоянными свойствами при параболическом профиле скорости между двумя параллельными пластинами и в трубе. Течение пробки газа между двумя параллельными пластинами исследовалось в [10] при этом для решения радиационной ча сти задачи было использовано приближение Шустера — Шварцшильда. Исследованию теплообмена на тепловом начальном участке при течении излучающей и поглощающей жидкости в трубе в приближении серого и несерого газа при параболическом профиле скорости посвящены работы [И, 12]. Авторы [13, 14] исследовали теплообмен при турбулентном течении излучающего и поглощающего серого газа в трубе в условиях, когда газ является оптически тонким, а в работе [15] приведены экспериментальные и теоретические результаты по теплообмену при полностью развитом течении несерого излучающего газа в трубе. Задача нахождения распределения температуры на тепловом начальном участке для ламинарного течения в трубе была решена в общем виде методом  [c.581]

С только что рассмотренным течением в известной мере родственно течение, вызываемое вихревым источником, находящимся между двумя параллельными стенками. Такое течение было исследовано Г. Фогельполем Для очень малых чисел Рейнольдса получается распределение скоростей, почти совпадающее с параболическим распределением при течении Хагена—Пуазейля. С увеличением числа Рейнольдса и при одновременном развитии пограничного слоя профиль скоростей все более и более приближается к прямоугольной форме. Аналогичное турбулентное течение было рассмотрено К. Пфляйдерером См. в связи с этим также работу Э. Беккера [ ].  [c.222]

Некоторые прежние исследования устойчивости/ После Рэйли при исследовании устойчивости сначала ограничивались рассмотрением исключительно течения Куэтта, т. е. течения между двумя параллельными стенками с линейным распределением скоростей (рис. 1.1). Очень тщательные исследования, выполненные А. Зоммерфельдом [ ], Р. Мизесом и Л. Хоп-фом с полным учетом вязкости, показали, что течение Куэтта устойчива при всех числах Рейнольдса и при возмущениях с любой длиной волны. Этот результат, полностью противоречащий опыту, привел к тому, что метод малых колебаний стали считать непригодным для решения проблемы перехода ламинарной формы течения в турбулентную. Однако впоследствии выяснилось, что такой взгляд на метод малых колебаний не оправдан, так как течение Куэтта явля- ется неподходящим примером, по-скольку оно не дает возможности ввести в расчет кривизну про-филя скоростей между тем, со-гласно сказанному в предыдущем параграфе, кривизна профиля скоростей играет настолько важную роль, что пренебрегать ею недопустимо.  [c.431]

При течении жидкости или газа по трубе, которой можно уподобить пространство между двумя ребрами, картина потока зависит от вязкости протекающего вещества, размеров трубы и скорости потока. При небольших размерах, малых скоростях и высоких кинематических вязкостях наблюдается так называемый ламинарный поток, при котором отдельные струи потока протекают по каналу приблизительно параллельными путями. При больших размерах, значительных скоростях и меньших вязкостях имеем турбулентйое движение, при котором отдельные струи потока интенсивно перемещаются и в поперечном направлении. Уже при сопоставлении обоих типов движений видно, что теплопередача в пограничном слое от стенки к текущей среде осуществляется при турбулентном потоке легче, чем при ламинарном. Это объясняется тем, что при турбулентном потоке постоянно происходит перемешивание частиц в поперечном направлении, при котором нагретые частицы перемещаются от стенок к середине потока, в то время как при ламинарном потоке передача в направлении, перпендикулярном к потоку, осуществляется исключительно за счет теплопроводности.  [c.527]


Опыт показывает, что приведенные соотношения оправдываются в умеренно широком диапазоне чисел Прандтля хорошо, в особенности если ввести в них поправочный коэффициент, слабо зависящий от числа Рг. Полного соответствия и нельзя ол<ндать, принимая во внимание относительную примитивность заложенной в основу теории физической схемы. Специальное исследование аналогии Рейнольдса, в которое мы не станем углубляться, показывает, что она имеет точный смысл только при том условии, когда распределения скоростей и тедшературных напоров сохраняются во всех поперечных сечениях потока взаимно подобными. Это заведомо не может строго соблюдаться в тех случаях, когда давление изменяется вдоль обтекаемой поверхности, как это происходит при течении внутри трубы. Кроме того, вовсе не обязательно предполагать, что происходит одновременное затухание эффектов пульсационного переноса количества движения и теплоты. В настоящее время можно считать установленным, что оба эффекта развиваются параллельно, но отнюдь не идентично. Наконец, принятая двухслойная схема, конечно, только грубо воспроизводит действительность. Лучший результат должна давать схема, предусматривающая наличие переходной зоны между турбулентным течением и вязким подслоем (теория Кармана — Шваба).  [c.118]


Смотреть страницы где упоминается термин Течение турбулентное между параллельны : [c.152]    [c.231]    [c.232]    [c.179]    [c.43]    [c.27]    [c.287]    [c.320]    [c.212]    [c.42]    [c.42]   
Техническая гидромеханика (1987) -- [ c.0 ]



ПОИСК



Теплообмен в термическом начальном участке при турбулентном течении в канале между параллельными пластинами

Теплообмен при полностью развитом турбулентном течении в канале между параллельными пластинами и в кольцевых каналах

Течение турбулентное

Течения параллельные

Турбулентное течение между параллельными плоскостями (течение в плоской трубе)



© 2025 Mash-xxl.info Реклама на сайте