Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Источник вихревой

При использовании таких, а также перечисленных ниже глушителей на потоках жидкостей следует иметь в виду, что каждое из местных сопротивлений одновременно является местом возникновения срыва вихрей, а значит, является источником вихревого шума.  [c.369]

Если обозначить ослабление шума в элементе активного глушителя через AL, а увеличение уровня громкости из-за действия возникающего источника вихревого шума через Lp, то первая величина не должна быть меньше второй, и их разность называется добротностью активного глушения  [c.369]


Наоборот, при отсутствии облицовки стенок применительно к магистралям гидропередач считается [124], что отводы с поворотом магистрали на 90° при турбулентных потоках имеют отрицательную добротность и являются источниками вихревого шума с широким диапазоном частот. Поэтому в магистралях гидропередач не рекомендуют применять скорости рабочей жидкости свыше  [c.371]

Полученное выражение (3.6) показывает, что для начального момента вихрь всюду был равен нулю, кроме оси х. На оси же х у = 0) вихрь в начальный момент был равен бесконечности. На этом основании функцию (3.6) можно называть функцией источника вихревого слоя, расположенного на прямой = О и начавшего своё действие с момента Ь — О. Если же источник вихревого слоя будет расположен не на прямой = О, а на прямой у = и начнёт своё  [c.317]

На множитель и в выражении (3.7) можно смотреть как на мощность источника вихревого слоя. Если вихревые слои будут заполнять целую полосу от у = а до у — Ь, то, вводя в рассмотрение  [c.318]

Проводя интегрирование, получим функцию от непрерывного распределения источников вихревых слоёв  [c.319]

Можно ввести также в рассмотрение и непрерывную последовательность источников вихревого слоя во времени от момента = О до момента z—T. Для этого случая функция вихря равна  [c.319]

По функции источника вихревого слоя (3.7) можно образовать функцию диполя вихревого слоя с помощью дифференцирования (3.7) либо по параметру т, либо по параметру г)  [c.319]

Мощность источника вихревого слоя 318  [c.516]

Следует заметить, что т несет в себе лишь расчетную нагрузку в отличие от rj,, которая имеет определенный физический смысл при оценке совершенства холодильной машины с вихревым расширительным устройством в сравнении с изоэнтропным идеальным детандером. Обычно в техническом задании на расчет должны быть заданы потребная температура и расход подогретых масс газа на выходе из вихревой трубы и технические характеристики источника сжатого газа давление , допустимый расход G, температура сжатого газа Г, (например  [c.226]

Чтобы снизить температуру осушаемого воздуха и увеличить выпадение конденсата с последующим его удалением, в схеме в качестве источника холода используют вихревую трубу. Способы ее включения в схему многовариантны, о чем можно судить по опубликованным работам. Основным требованием к режиму работы трубы следует считать обеспечение максимально возможной холодопроизводительности. Очевидно, что в этом случае целесообразно рассмотреть схему осушки, включающую в себя вихревую трубу с дополнительным потоком, которая обеспечит  [c.260]


Атмосферный воздух через фильтр 4, снабженный масляным и фильтрующим элементом 6, проходя сопловой ввод, образованный тремя лепестками 13, поступает в вихревую трубу 1 в виде интенсивно закрученного потока. Интенсивность закрутки управляется поворотом сектора 12. При этом усики лепестков перемещаются вдоль пазов, выпиленных в секторе. Изменение интенсивности закрутки неразрывно связано в этом случае с изменением степени дросселирования карбюратора. Горючее всасывается создаваемым разряжением через форсунку 3 в приосевую зону вихревой трубы, где и осуществляется его качественный распыл. Для повышения степени турбулизации и создания дополнительного источника акустических возмущений использован турбулизатор. 5, выполненный в виде радиально размещенных  [c.299]

Причинами, вызывающими вибрационный режим горения, могут быть пульсации местной концентрации топлива, вызванные использованием малонапорной системы подачи топлива близкое расположение форсунки к стенкам камеры может быть причиной возникновения акустических колебаний, инициирующих неустойчивость рабочего режима. В то же время, источником неустойчивости могут быть спиралевидные вихревые жгуты, разрушающиеся на стенках перфорированной камеры, а также прецессия вихря (см. рис. 3.19).  [c.317]

ДОМ подключенный через первую секцию теплообменного аппарата 2, установленного в обогреваемом объекте 3, к входным устройствам вихревой трубы с дополнительным потоком 4 и низкотемпературной вихревой трубы 5. Выход подогретого потока низкотемпературной трубы 5 соединен с приосевой зоной вихревой трубы с дополнительным потоком 4. Выход подогреваемого потока вихревой трубы с дополнительным потоком 4 через вторую секцию теплообменного аппарата 2 подключен к активному соплу эжектора 6. Выходы охлажденного потока вихревых труб 4 и 5 через низкотемпературный источник тепла 7 подсоединены к пассивному соплу эжектора 6. Камера смешения 5 эжектора б соединена со входом в компрессор /, привод которого осуществляется от электромотора 9. С помощью характеристик вихревых  [c.394]

Имеется несколько типов моделей, объясняющих энергоразделение в вихревом струйном течении. Анализ литературных источников позволяет разделить их на четыре г )уппы  [c.157]

При непрерывном расположении источников и стоков вдоль некоторой кривой L обозначим через dQ их расход на участке кривой ds. Тогда рассуждения, аналогичные приведенным о вихревом слое, приводят к выражению для комплексного потенциала течения, вызванного слоем источников и стоков  [c.222]

Группа методов, называемая методами особенностей, основана на замене заданного контура тела системой непрерывно распределенных вдоль него точечных особенностей (источников, стоков, диполей, вихрей). Широкое распространение получил метод распределенных вихрей или просто вихревой метод, в котором контур тела заменяется вихревым слоем (см. п. 7.2). Такая  [c.247]

Вихревой слой. До сих пор мы рассматривали только одиночные или дискретно расположенные источники, вихри, диполи. Представим теперь, что вдоль некоторой цилиндрической поверхности, след которой на плоскости чертежа изображается кривой (рис. 116), в каждой ее точке расположены точечные вихри, т. е. рассматривается непрерывное распределение вихрей на поверхности. Будем называть совокупность этих вихрей вихревым слоем. В теории идеальной жидкости вихревой слой может служить моделью встречающихся в реальных жидкостях поверхностей, при переходе через которые скорость течения меняется очень резко.  [c.237]

Нетрудно представить, что если в а жидкости единственным источником движения является вихревой слой, то по одну его сторону движение направлено вправо (скорость и ), а по другую — влево (скорость и ). Выделив малым замкнутым контуром (11 (см. рис. 116) элемент вихревого слоя /э и вычисляя циркуляцию, находим  [c.237]

Группа методов, называемых методами особенностей, основана на замене заданного контура тела системой непрерывно распределенных вдоль него точечных особенностей (источников, стоков, диполей, вихрей). Широкое распространение получил метод распределенных вихрей или просто вихревой метод, в котором контур тела заменяется вихревым слоем ( 2 гл. 7). Такая замена имеет физические предпосылки, так как при обтекании тел реальной (вязкой) жидкостью на их поверхности образуется тонкий пограничный слой,  [c.292]


Для определения расхода жидкости через заданную окружность и циркуляции Г по этой окружности необходимо найти распределение особых точек на плоскости (источников, стоков, диполей, вихревых точек) для течения, характеризуемого комплексным потенциалом W(z), т. е. тех точек, в которых скорость обращается в бесконечность.  [c.69]

Традиционно неадиабатные вихревые трубы рассматривались лишь как охлаждаемые. Развитие областей внедрения вихревых энергоразделителей в системы охлаждения, термостатирования теплонапряженных деталей и узлов агрегатов энергетической, авиационной и некоторых других отраслей [7, 8, 38, 39, 73, 145, 194] потребовало постановки опытов по исследованию характеристик вихревых труб при подводе тепла к подогреваемему периферийному потоку через стенки камеры энергоразделения от внешнего источника. Экспериментальные исследования [73, 145, 194] по определению влияния внешнего теплового потока, подводимого от внешнего источника тепла через стенки камеры энергоразделения, были проведены на двух вихревых трубах с цилиндрической проточной частью и геометрией по своим параметрам близкой к оптимальной, по рекомендациям А.П. Меркулова [116]. Снижение эффектов охлаждения обохреваемой от внешнего источника вихревой трубы по сравнению с адиабатными условиями можно оценить относительной величиной  [c.281]

Как указывалось выше, вихревым шумом называется высокочастотный звук, создаваемый случайными флуктуациями сил на лопастях. Наиболее значительным источником вихревого шума являются флуктуации подъемной силы при движении лопасти в турбулизованном следе винта, причем главную роль играют случайные нагрузки, вызванные концевыми вихрями. Проведем простейший анализ вихревого шума. Рассмотрим лопасть длины I, обтекаемую потоком со скоростью V, причем на единицу размаха лопасти действует подъемная сила Fz t), величина которой изменяется случайно вследствие турбулентности и завихренности следа. Предполагая, что на хорду каждого сечения действует импульсная сила, представим результат действия этой силы вертикально ориентированным диполем, который создает звуковое давление следа  [c.827]

Изотахи 552, 553, 591 Импульс кинематический 179, 225, 666 Интеграл вероятности полный 92 Истечение через коническую воронку 222 Источник вихревой 222  [c.708]

Вихревой эффект, или эффект Ранка реализуется в процессе течения интенсивно закрученного потока по осесимметричному каналу, на торцевых поверхностях которого устанавливаются ограничительные элементы — лроссель на горячем и диафрагма с центральным отверстием на холодном концах трубы. При определенном сочетании режимных и конструктивных управляющих параметров из отверстия диафрагмы истекает некоторая охлажденная часть исходного закрученного потока, а из дросселя — другая подогретая его часть. При этом на основе закона сохранения вещества можно составить уравнение баланса массы для вихревой трубы классической схемы с одним источником подвода газа через закручивающее сопло  [c.38]

В опубликованных литературных источниках достаточно большое число исследований посвящено выявлению оптимальной формы камеры энергоразделения и ее протяженности. На р>ан-нем этапе исследований вихревые трубы имели весьма длинную камеру энергоразделения, по рекомендациям Р. Хилша,  [c.76]

Течение газа в цилиндрическом канале сопровождается образованием структуры, состоящей из двух вращательно-поступательных потоков. По периферии движется потенциальный (первичный) вихрь. Центральную область занимает вторичный вихрь с квазитвердой закруткой, образующейся из масс газа, втекающих из окружающей среды. Вблизи оси поступательная составляющая скорости вторичного вихря имеет противоположное первичному направление. При некоторых условиях течение в вихревом генераторе звука (ВГЗ) теряет устойчивость, в результате чего возникают интенсивные пульсации скорости и давления, которые распространяются в окружающую среду в виде звуковых волн [96]. Источником звуковых волн при этом считается прецессия вторичного вихря относительно оси ВГЗ. Пульсации скорости и прецессию ядра наблюдали визуально в прозрачной трубке с помощью вводимого красителя [94]. При нестационарном режиме угол наклона винтообразной линии тока периодически менялся по величине точно в соответствии с углом поворота прецессирующего ядра.  [c.118]

Результаты расчета, проведенного на основе предложенного механизма, показали хорошее согласие с экспериментальными данными [140]. Применение такого подхода особенно эффективно при расчете работы вихревой трубы на режиме ц = 1 (когда горячий конец полностью заглушен). Следует отметить, что источником работы А, затрачиваемой на совершение микрохолодильных циклов, является энергия турбулентности, однако, саму ее структуру в [93, 94, 210] явно не учитывали, а необходимые энергетические соотношения получали на основе первого закона термодинамики. Последнее обстоятельство во многом определяет погрешность модели и в то же время подсказывает путь дальнейшего ее совершенствования, смысл которого состоит в детальном рассмотрении динамики турбулентного моля, времени его жизни I, масштаба и других характеристик как структурного элемента турбулентного потока.  [c.122]

Характеристики прецессирующего ядра вихря являются основным источником информации при разработке вихревых измерительных приборов.  [c.148]

Смена режима работы с охлаждения на подогрев осуществляется перемещением вихревых труб 3 и 5, имеющих общую диафрагму, вниз. В результате чего к источнику сжатого воздуха подключается сопловой ввод вихревой трубы J, а выходящий из ее горячего конца подогретый поток подается на подофев камеры термостатирования. Одна из возможных перспективных схем вихревого термостата была использована при разработке для ЦНИЛ (г. Липецк) установки, предназначенной для испытания стройматериалов по действующим стандартам на морозостойкость и термоудар. Созданная конструкция позволяет проводить испытания образцов, помешенных как в газообразную (воздух), так и в жидкую (вода, растворы солей) среды. Техническая характеристика термостата  [c.241]


В качестве источника холода в системах осушки сжатого воздуха достаточно эффективно могут применяться вихревые трубы. Использование их может быть продиктовано следующими соображениями простотой эксплуатации и малой стоимостью изготовления системы использованием не только холодного потока для охлаждения сжатого воздуха перед влагоотдели-телем, но и горячего потока для подофева сжатого воздуха после влагоотделителя, что также снижает относительную влажность. Как пример, можно рассмотреть осушитель, включающий вихревую трубу (ВТ) 1 и теплообменник 2 (рис. 5.24), Холодный воздух из ВТ поступает в межтрубный канал 5 для охлаждения протекающего по змеевиковой трубе 4 влажного сжатого воздуха, поступающего в нее через патру к 3. Охлажденный поток через патрубок 6 выходит во внутреннюю полость цилиндрического корпуса 7 и в нижнюю камеру теплообменника 8. Здесь под действием центробежной силы происходит сепарация конденсата, который стекает в нижнюю часть камеры, откуда удаляется через сливной кран 9. Осушенный таким образом воздух поступает в сопловой ввод 10 ВТ. Холодный поток, перемещаясь по патрубку и, попадает в канал 5. Нафетый поток выходит из осушителя через дроссельный вентиль /2 и патрубок 13. Холодный поток, подогретый в теплообменнике теплом охлаждаемого сжатого воздуха, по патрубку 14 поступает в трубопровод 15, где сме-  [c.259]

В сварочном производстве достаточно большой объем занимают ручная и полуавтоматическая сварка, требующие постоянного присутствия в зоне вьщеления аэрозолей и токсичных газов оператора. На 1 кг расходуемого электрода вьшеляется до 50 г пыли, что приводит к загазованности в 3-10 и более раз превышающую ПДК. Аналогичные проблемы возникают и при нанесении лако-красочных покрытий, хотя источник зафязнения при этом имеет другую природу. Борьба с газовьшелениями и аэрозолями ведется как путем локализации вредных выделений, так и с помощью приточно-вытяжной вентиляции. В некоторых случаях эффективны местные отсосы. Для этой цели разработан вихревой сварочный аппарат [40, 112, 116] на базе вихревого  [c.270]

Результаты опытов были использованы для определения коэффициентов теплоотдачи в камере энергоразделения неадиабатных вихревых труб с подофевом от внешнего источника. Исследования проведены в диапазоне чисел Re = 2 10 —6 10 , где число Рейнольдса рассчитывадось по расходной скорости.  [c.286]

Для защиты откачиваемых объемом от попадания рабочих жидкостей вакуумных установок в технике вакуумирования используются вакуумные ловушки, исключающие возможность попадания в откачиваемую полость паров жидкости и масла [65]. Повышение эффективности работы вакуумных охлаждаемых ловушек может быть достигнуто с помощью двухдиффузорной вихревой трубы с конической камерой энергоразделения [31] (рис. 6.14). Вакуумная охлаждаемая ловушка содержит корпус 1 с входным 2 и выходным 3 патрубками и размещенный в корпусе 1 охлаждаемый элемент 4 с каналом 5 для газообразного хладагента, сообщенным с газовым автономным охладителем, содержащим теплообменник-регенератор с линиями прямого 6 и обратного 7 потоков, первая из которых подключена к источнику высокого давления. Газовый автономный охладитель выполнен в  [c.304]

Ловушка работает следующим образом. При запуске сжатый воздух из источника высокого давления подается по линии 6 прямого потока в вихревую камеру 9, причем вход воздуха в камеру имеет тангенциальный характер. В результате в камере 9 образуется сильно закрученный поток, перемещающийся в направлении щелевого диффузора 10. В процессе энергоразделения по аналогии с работой самовакуумирующейся вихревой трубы на оси камеры создается зона относительного разряжения со сравнительно низкой температурой.  [c.306]

Ограниченность на борту запаса сжатого воздуха при использовании автономного источника (баллонная система) вызывает необходимость учета его расхода на всех режимах вихревого го-релочного устройства. Расход сжатого воздуха существенно меняется при переходе с режима запуска на режим устойчивого горения (рис. 7.12).  [c.322]

В камере энергетического разделения вихревого горелочного устройства при работе на режиме без горения создаются зоны, температура в которых на 40—60% превышает исходную. Этот факт может быгь использован для организации теплового возгорания без привлечений внешнего источника энергии — свечи зажигания. В вихревых нагревателях тепловое возгорание должно наступать при температуре на входе Г, в 0 раз меньше, чем температура самовоспламенения. Тогда условия безыскрового запуска вихревой горелки должно определиться неравенством  [c.323]

Таким образом, еще раз подтверждена целесообразность использования закрученного потока в виде возвратно-вихревого течения для пленочно-конвективного охлаждения высокоэнталь-пийных потоков и неизотермических реагирующих течений при наличии интенсивных внутренних тепловых источников.  [c.358]

Работа сил вихревого электрического и эля по перемещению электрическ1 х зарядов и является работой сторонних сил, источником оде индукции.  [c.189]

Наряду с методом источников, а таюсе вихревой теорией, относящихся к точным, в практических исследованиях достаточно широк з используются приближенные методы оценки аэродинамических производных несущих поверхностей. В их числе методы, основанные па гипотезах гармоничности и стационарности, а также метод касательных клиньев, дающие удовлетворительные результаты для достаточно широкого класса крыльев, обтекаемых дозвуковыми и сверхзвуковыми неустановившимися потоками при иебольш их числах Струхаля, характеризующих эти потоки.  [c.242]


Смотреть страницы где упоминается термин Источник вихревой : [c.822]    [c.318]    [c.518]    [c.449]    [c.31]    [c.29]    [c.93]    [c.170]    [c.269]    [c.395]    [c.218]   
Теория пограничного слоя (1974) -- [ c.222 ]



ПОИСК



Вихревые усы

Источники и вихревые кольца

Мощность источника вихревого

О точечном источнике и вихревой нити в винтовом потоке

Течение вызываемое вихревым источником

Функция источника вихревого слоя



© 2025 Mash-xxl.info Реклама на сайте