Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Жидкость диссипация энергии

Имея дело с неравномерным движением жидкостей, которые могут рассматриваться как несжимаемые, удобно определять диссипацию энергии в тепловую на единицу веса текущей жидкости. При этом принимается во внимание как тепло, рассеивающееся в окружающем пространстве, так и увеличение внутренней (тепловой) энергии самой жидкости. Диссипация энергии на единицу веса определяется из уравнения энергии (4-24а), соответствующего одномерной постановке, и носит название потери напора , хотя эти потери относятся только к механической энергии, тогда как общая энергия системы сохраняется. При отсутствии работы на валу уравнение (4-24а) может быть записано для сечений I и 2 следующим образом  [c.334]


Вычислим диссипацию энергии в гравитационной волне. Здесь надо говорить не о диссипации кинетической энергии, а о диссипации механической энергии мех, включающей в себя наряду с кинетической также и потенциальную энергию в поле тяжести. Ясно, однако, что на обусловленную процессами внутреннего трения в жидкости диссипацию энергии не может влиять факт наличия или отсутствия поля тяжести. Поэтому мех определяется той же формулой (16,3)  [c.123]

Энергетическое уравнение состояния связывает внутреннюю энергию с температурой, плотностью и деформированным состоянием (в том смысле, который будет определен ниже). Для простых ньютоновских жидкостей зависимостью от деформированного состояния можно пренебречь, так что энергетическое уравнение состояния сводится к зависимости удельной теплоемкости от температуры 1). Для изотермических систем уравнение баланса энергии можно затем решить независимо для определения диссипации энергии.  [c.15]

Приведенные рассуждения способствуют дальнейшему разъяснению точки зрения, высказанной в разд. 1-9 и касающейся вывода уравнения Бернулли на основании первого закона термодинамики, который часто встречается в руководствах по гидродинамике. На самом деле, если предположить справедливость реологического уравнения состояния (1-9.1), то диссипативный член т Vv обращается в нуль, т. а. в идеальных жидкостях не происходит диссипации энергии. Если первоначально принять это положение как интуитивное, то можно прямо записать уравнение (1-10.14) с нулевым последним членом в правой части и вычесть его из уравнения баланса энергии (1-10.13). Разумеется, при этом получим уравнение (1-10.6) (с V V. х = 0), т. е. уравнение Бернулли. Очевидно, что при таком подходе принимается предположение, что в некоторой точке вдоль линии тока нет диссипации. Несмотря на это, указанный подход имеет столь глубокие традиции, что используется всюду в гидромеханике ньютоновских жидкостей, хотя он не только логически небезупречен, но даже приводит к неправильным результатам ).  [c.52]

Следует ожидать, что диссипация энергии жидкости зависит не только от физико-химических свойств жидкости, но и от геометрии объема, занимаемого газожидкостной системой. Будем предполагать, что процесс дробления пузырьков газа происходит в трубе длиной Ь и площадью поперечного сечения И. В соответствии с [50] будем считать, что среднее значение диссипации энергии е зависит только от макроскопических параметров системы  [c.136]


Изотропность турбулентного течения означает, что пульса-ционные компоненты скорости течения не зависят от направления. Хотя в трубах это условие выполняется лишь вдали от поверхностей стенок, соотношение (4. 3. 8) может быть использовано для турбулентных вихрей в жидкости, размер которых, с одной стороны, много меньше диаметра трубы, а с другой — больше характерного линейного масштаба диссипации энергии Г [47]  [c.140]

При выводе уравнений движения мы совершенно не учитывали процессов диссипации энергии, которые могут иметь место в текущей жидкости вследствие внутреннего трения (вязкости) в жидкости и теплообмена между различными ее участками. Поэтому все излагаемое здесь и в следующих параграфах этой главы относится только к таким движениям жидкостей и газов, при которых несущественны процессы теплопроводности и вязкости о таком движении говорят как о движении идеальной жидкости.  [c.17]

Мы переходим теперь к изучению влияния, которое оказывают на движение жидкости происходящие при движении процессы диссипации энергии. Эти процессы являются выражением всегда имеющей место в топ или иной степени термодинамической необратимости движения, связанной с наличием внутреннего трения (вязкости) и теплопроводности.  [c.71]

Диссипация энергии в несжимаемой жидкости  [c.78]

Наличие вязкости приводит к диссипации энергии, переходящей в конце концов в тепло. Вычисление диссипируемой энергии в особенности просто для несжимаемой жидкости.  [c.78]

Таким образом, находим окончательно следующую формулу для диссипации энергии в несжимаемой жидкости  [c.79]

Решение. Основная диссипация энергии будет происходить в пристеночном слое жидкости, где скорость меняется от нуля на самой стенке до значения о = которое она имеет в волне Средняя диссипация энер-  [c.135]

При больших R велики таклсе и числа Рейнольдса R . крупномасштабных пульсаций. Но большие числа Рейнольдса эквивалентны малым вязкостям. Отсюда можно заключить, что для крупномасштабного движения, являющегося как раз основным во всяком турбулентном потоке, вязкость жидкости не играет роли. Поэтому в крупномасштабных пульсациях не происходи г и заметной диссипации энергии.  [c.186]

ЖИДКОСТИ, <У2>/2, есть не что иное, как диссипация энергии —е. Поэтому  [c.199]

В конце 2 было указано, что полная система гидродинамических уравнений должна содержать пять уравнений. Для жидкости, в которой имеют место процессы теплопроводности и внутреннего трения, одним из этих уравнений является по-прежнему уравнение непрерывности уравнения Эйлера заменяются уравнениями Навье — Стокса. Что же касается пятого уравнения, то для идеальной жидкости им является уравнение сохранения энтропии (2,6). В вязкой жидкости это уравнение, разумеется, не имеет места, поскольку в ней происходят необратимые процессы диссипации энергии.  [c.270]

Подчеркнем здесь следующее обстоятельство. Наличие ударных волн приводит к возрастанию энтропии при таких движениях, которые можно рассматривать во всем пространстве как движение идеальной жидкости, не обладающей вязкостью и теплопроводностью. Возрастание энтропии означает необратимость движения, т. е. наличие диссипации энергии. Таким образом, разрывы представляют собой механизм, который приводит к диссипации энергии при движении идеальной жидкости. В связи с этим для движения тел в идеальной жидкости, сопровождающегося возникновением ударных волн, не имеет места парадокс Даламбера ( 11)—при таком движении тело испытывает силу сопротивления.  [c.459]

Если учесть, кроме того, что при вращении жидкости как целого вокруг оси с угловой скоростью (U диссипация энергии отсутствует, хотя координаты и скорости какой-либо точки жидкости меняются соответственно уравнениям  [c.351]

Турбулентная пульсация из точки ее образования распространяется в окружающую жидкость по законам диффузии. Диффузионный характер распространения — общее свойство всех необратимых возмущений движения, сопровождающихся диссипацией энергии. Очевидно, что эта наиболее общая особенность возмущений движения, а следовательно и турбулентных пульсаций, должна исследоваться прежде всего.  [c.413]


Диссипирующая в потоке жидкости кинетическая энергия выделяется в основном у твердых стенок. Так как диссипация кинетической энергии происходит преимущественно в высокочастотных пульсациях, то последние оказывают также влияние на формирование вязкого подслоя, чтобы структура его соответствовала величине диссипации энергии в данных условиях движения. Это влияние осуществляется проникновением высокочастотных пульсаций в вязкий подслой. В свою очередь, возникающие у твердой стенки вязкие возмущения также воздействуют на основной поток. Весьма вероятно, что на границе вязкого подслоя идущие от стенки вязкие возмущения трансформируются в турбулентные пульсации так как геометрические размеры области, в которой происходит эта трансформация, есть толщина вязкого подслоя 6/7, то указанные турбулентные пульсации будут иметь масштаб 6 , т. е. окажутся наименьшими.  [c.419]

При течении вязкой жидкости через местные сопротивления, т. е. через места резкого изменения формы пограничных поверхностей труб и каналов, как, например, расширения, сужения, повороты, изломы и т. п., изменяется поле скоростей потока и чаще всего образуются зоны отрыва потока, заполненные крупными и мелкими вихрями (рис. 6.26—6.28). Крупные вихри интенсифицируют процесс диссипации энергии, благодаря чему потери в местных сопротивлениях могут намного превышать потери по длине на участке той же протяженности, что и местное сопротивление. Структура потока, размеры и интенсивность вихрей существенно зависят от режима течения, т. е. от числа Рейнольдса.  [c.170]

При протекании жидкости (газа) через трубы, каналы, проточные части машин и аппаратов поток претерпевает более или менее значительные деформации, вызывающие такое неравномерное распределение скоростей, которое, в свою очередь, приводит к появлению вязкостных напряжений в толще потока. Работа этих напряжений обусловливает диссипацию энергии. Кроме того, во многих случаях течение сопровождается турбулентным перемешиванием слоев жидкости и отрывами потока от стенок с образованием стационарных вихревых зон. Эти явления, в свою очередь, влияют на распределение и величину напряжений, а значит и на величину потерь энергии.  [c.151]

Более строгий анализ был выполнен в 1963 г. Д. Муром (см. [59]), который учел диссипацию энергии не только в объеме жидкости, но и в пограничном слое. Результирующее соотношение для коэффициента сопротивления, полученное Муром, имеет вид  [c.217]

Анализируя уравнение (7), можно заключить, что только при так называемом квазитвердом движении вязкой жидкости диссипации энергии нет. Минимум диссипации энергии определяется принципом Гамильтона, имеющим следующий смысл. При течении вязкой среды с независящими от времени характеристиками дисси-пируемая в некотором объеме механическая энергия Удисо меньше, чем при аналогичном произвольном движении несжимаемой жидкости с тем же распределением скоростей на поверхности, ограничивающей этот объем, т. е. Удис.пр — /диь >0.  [c.11]

Разнообразие волновых структур в активных средах проявляется и в сложных структурах конденсированных сред. Следует прежде всего рассмотреть аналогию волновой картины пластической деформации при упругопластическом переходе в вихреобразования в движущейся трубе жидкости при переходе от ламинарного течения к турбулентному. Этому неравновесному фазовому переходу отвечает критическое число Рейнольдса. С другой стороны, переход от упругой деформации (апало1- ламинарного течения) также является неравновесным фазовым переходом, возникающем в результате потери упругой устойчивости деформируемой конденсированной среды, проявляющаяся на различных масштабных уровнях. В обоих случаях переход структуры из одного устойчивого состояния в дру1ое сопровождается порождением aBTOBOjni, как способа диссипации энергии средой в критических точках (см. главу 1).  [c.254]

Если бы было возможно потенциальное обтекание равномерно движущегося в идеальной жидкости тела, то было бы Р = onst (так как и = onst) и F = 0. Другими словами, отсутствовала бы как сила сопротивления, так и подъемная сила, т. е. действующие на поверхность тела со стороны жидкости силы давления взаимно компенсируются (так называемый парадокс Даламбера). Происхождение этого парадокса в особенности очевидно для силы сопротивления. Действительно, наличие этой силы при равномерном движении тела означало бы, что для поддержания движения какой-либо внешний источник должен непрерывно производить работу, которая либо диссипи-руется в жидкости, либо преобразуется в ее кинетическую энергию, приводя к постоянно уходящему на бесконечность потоку энергии в движущейся жидкости. Но никакой диссипации энергии в идеальной жидкости, по определению, нет, а скорость приводимой телом в движение жидкости настолько быстро убывает с увеличением расстояния от тела, что никакого потока энергии на бесконечности тоже нет.  [c.52]

Обратим внимание на следующее важное обстоятельство. Если турбулентное движение уже установилось (течение вышло на странный аттрактор ), то такое движение диссипативной системы (вязкой жидкости) в принципе не отличается от стохастического движения бездиссипативной системы с меньшей размерностью пространства состояний. Это связано с тем, что для установившегося движения вязкая диссипация энергии в среднем зп большое время компенсируется энергией, поступающей от среднего течения (или от другого источника неравновесности). Следовательно, если следить за эволюцией во времени принадлежащего аттрактору элемента объема (в некотором пространстве, размерность которого определяется размерностью аттрактора), то этот объем в среднем будет сохраняться — его сжатие в одних направлениях будет в среднем компенсироваться растяжением за счет расходимости близких траекторий в других направлениях. Этим свойством можно воспользоваться, чтобы получить иным способом оценку размерности аттрактора.  [c.167]


Вязкость жидкости становится существенной только для самых мелкомасштабных нульсац.ий, для которых R 1 (масштаб Ко этих пульсаций будет определен ниже в этом параграфе). Именно в этих мелкомасштабных пульсациях, не суш,е-ственных с точки зрения общей картины движения жидкости в турбулентном потоке, и происходит диссипация энергии.  [c.186]

Применим такие соображения к определению порядка величины диссипации энергии при турбулентном движении. Пусть е есть среднее количество энергии, диссипируемой в единицу времени в единице массы жидкости ). Мы видели, что эта энергия черпается из крупномасштабного движеиия, откуда постепенно передается во все меньшие масштабы, пока не диссипируется Б пульсациях масштаба io. Поэтому, несмотря па то, что диссипация обязана в конце концов вязкости жидкости, порядок величины е может быть определен с помощью одних только величин, характерных для крупномасштабных движений. Таковыми являются плотность жидкости р, размеры / и скорость Аи. Из этих трех величин можно составить всего одну комбинацию, обладающую той же размерностью, что и е, т. е. эрг/г-с = см /с Таким способом получаем  [c.187]

В этой главе букиа е будет обозначать среднюю диссипацию энергии, а не внутреннюю энергию жидкости  [c.187]

Для этого выясним предварительно, какими параметрами могут вообще определяться свойства турбулентного движения в участках, малых по сравнению с /, но больших по сравнению с расстояниями ,о. на которых начинает играть роль вязкость жидкости ниже будет идти речь именно о таких расстояниях. Этими параметрами является плотность р жидкости и, кроме того, еще одпа. характерная для турбулентного потока величина — энергия е, диссипируемая в единицу времени в единице массы жидкости. Мы видели, что е представляет собой поток энергии, непрерывно передаваемой от пульсаций с большими к пульсациям с меньшими масштабами. Поэтому, хотя диссипация энергии и обусловливается в конечном итоге вязкостью жидкости и происходит в самых мелкомасштабных пульсациях, тем не менее величина е определяет свойства движения и в больших масштабах. Что касается масштабов I и Аи размеров и скорости движения в целом, то естественно считать, что (при заданных р и е) локальные свойства турбулентности от этих величин не зависят. Вязкость жидкости V тоже не может входить ни в какие интересующие нас теперь величины (напоминаем, что речь идет о расстояниях  [c.189]

По мере приближения к поверхности стенки этот поток уменьшается, что связано как раз с диссипацией энергии. Производная d(qyidy дает диссипацию в единице объема жидкости, а разделив ее на р, получим диссипацию в единице массы  [c.248]

Решение. На границе жидкости с газом должна обращаться в нуль не самая касательная составляющая скорости жидкости, а лишь ее нормальная производная (вязкостью газа пренебрегаем.) Поэтому градиент скорости вблизи поверхности не будет аномально велик, пограничный слой (в том виде, о котором шла речь в 39) будет отсутствовать, а потому будет отсутствовать (почти по всей поверхности пузырька) также и явление отрыва. При вычислении диссипации энергии с помощью объемного интеграла (16,3) можно поэтому во всем пространстве пользоваться распределением скоростей, соответствующим потенциальному обтеканию шара (задача 2 10), пренебрегая при этом ролью поверхностного слоя жидкости и очень тонкого турб лент-ного следа. Производя вычисление по формуле, полученной в задаче к 16, найдем  [c.258]

Будем предполагать, что имеющиеся в жидкости разности температур достаточно малы для того, чтобы ее ( зизические свойства можно было считать не зависящими от температуры. С другой стороны, эти разности будут предполагаться настолько большими, чтобы по сравнению с ними можно было пренебречь изменениями температуры, обусловленными выделением тепла, связанным с диссипацией энергии путем внутреннего трения (см. 55). Тогда в уравнении (50,2) может быть опущен член, содержащий вязкость, так что остается  [c.292]

Во-вторых, изменение состава может происходить путем молекулярного переноса веществ смеси из одного участка жидкости в другой. Выравнивание концентрации путем такого непосредственного изменения состава каждого из участков жи,п-кости называют диффузией. Диффузия является процессом не-1 )братимым и представляет собой наряду с теплопроводностью и вязкостью один из источников диссипации энергии в жидкой смеси.  [c.319]

В звуковой волне наряду с плотностью и давлением испытывает периодические колебания около своего среднего значения также и температура. Поэтому вблизи твердой стенки имеется периодически меняющаяся по величине разность температур между жидкостью и стенкой, даже если средняя температура жидкости равна температуре стенки. Между тем на сймой поверхности температуры соприкасающихся жидкости и стеики должны быть одинаковыми. В результате в топком пристеночном слое жидкости возникает большой градиент температуры температура быстро меняется от своего значения в звуковой волне до температуры стенки. Наличие же больших градиеЕнов температуры приводит к большой диссипацнп энергии путем теплопроводности. По аналогичной причине к большому поглощению звука приводит при наклонном падении волны также li вязкость жидкости. При таком падении скорость жидкости в волне (по направлению распространения волны) имеет отличную от нуля компоненту, касательную к поверхности стенки. Между тем на самой поверхности жидкость должна полностью при.г и-пать к стенке. Поэтому в пристеночном слое жидкости возникает большой градиент касательной составляющей скорости. ), что и приводит к большой вязкой диссипации энергии (см. задачу 1).  [c.426]

Развитие термодинамики необратимых процессов сделало возможным изучение сложных явлений, состоящих из шюкольких одновременно происходящих процессов разной природы, и привело к созданию единого способа феноменологического описания их. Это в свою очередь сделало правомерным, а возможно и обязательным, совместное рассмотрение явлений, которые изучались ранее независимо одно от другого. Исходя из этого в книге эффекты диссипации энергии при движении жидкости или газа, т. е. перенос импульса и теплоты, рассматриваются как составные части термодинамики. Едва ли кто-нибудь в настоящее время будет оспаривать, что теплопередача является одним из разделов динамики теплоты, т. е. термодинамики.  [c.5]

Из этого следует, что при не очень больших числах Рейнольдса, например не слишком превышающих критическое число Рейнольдса при отсутствии магнитного поля, наложение магнитного поля может существенно затормозить турбулентный механизм диссипации энергии (так как начальным этапом этого процесса является отбор энергии от осредненного потока про-дольны.ми турбулентными пульсациями, а последние подавляются поперечным магнитны.м полем). Поэтому поток жидкости при указанных условиях в отношении сопротивления движению будет ближе к ламинарному другими словами, наложение поперечного магнитного поля приведет к у.меиьшению коэффициента сопротивления.  [c.663]


Смотреть страницы где упоминается термин Жидкость диссипация энергии : [c.22]    [c.194]    [c.65]    [c.111]    [c.135]    [c.206]    [c.319]    [c.434]    [c.178]    [c.27]    [c.350]   
Теоретическая гидродинамика (1964) -- [ c.535 , c.540 ]



ПОИСК



Анализ вынужденных разрывных колебаний жидкости в трубопроводе в приближении, не учитывающем диссипацию энергии

Диссипация

Диссипация механической энергии в вязкой жидкости

Диссипация энергии

Диссипация энергии в вязкой жидкости

Диссипация энергии в несжимаемой жидкост

Диссипация энергии в несжимаемой жидкости

Диссипация энергии в несжимаемой при колебаниях в жидкости

Диссипация энергии при движении жидкости Уравнение Навье—Стокса

Дополнительные замечания о диффузии механической энергии через боковую поверхность элементарных струек, составляющих поток реальной жидкости. Функция диссипации механической энергии

Жидкости вязкие, действие силы диссипация механической энергии в них

Кудряшев, В. М. Головин. Влияние диссипации механической энергии на теплообмен при ламинарном движении жидкости в круглой цилиндрической трубе

Энергия жидкостей



© 2025 Mash-xxl.info Реклама на сайте