Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Температура продольная

Рассмотрим теперь взаимодействие, соответствующее случаю (2). В этом случае Сг = О и С1 = С , где — величина константы взаимодействия (п. 14). 15 результате решеточная теплопроводность еще в 3 раза уменьшается по сравнению с электронной. Более того, подходящей величиной 0 I формуле (20.3) является теперь дебаевская температура продольной  [c.282]

Вывод обобщенной формулы Максвелла—Мора несложен выписывается выражение для потенциала Гиббса системы через температуру, продольные усилия и изгибающие моменты, вызванные заданным нагружением N, М) и единичной обобщенной силой N , й). приложенной в рассматриваемой точке по направлению искомого перемещения затем вычисляется частная производная от потенциала Гиббса по обобщенной силе и в полученном выражении она приравнивается нулю (подробности вывода читатель сможет найти в статье И. И. Гольденблата и В. Л. Бажанова [22 ]), В результате получаем следующую формулу перемещения  [c.56]


Трещины поперечные, образовавшиеся примерно на равном расстоянии друг от друга, появляются под влиянием резких низких температур. Продольные трещины возникают при слабом основании и пропуске тяжелых транспортных средств или при неравномерной осадке земляного полотна по ширине косые трещины появляются как соединяющие между собой поперечные и продольные трещины.  [c.290]

В рассматриваемом случае плазма характеризуется двумя температурами продольной Т , соответствующей движению частиц вдоль магнитного поля, и поперечной T L, соответствующей движению частиц поперек магнитного поля.  [c.443]

Механические свойства при повышенных температурах (продольные образцы) [50]  [c.491]

Е - модуль продольной упругости материала аппарата при расчетной температуре, МПа (см. приложение 11, табл. 7)  [c.22]

Стали Модуль продольной упругости Е-10 МПа, при температуре, С  [c.99]

Рис. 5.49. Процесс возникновения сварочных напряжений при сварке пластин встык, Т =/(//) — распределение температуры по оси оу продольных напряженнй по осям Ох и Оу соответственно Рис. 5.49. Процесс возникновения <a href="/info/120278">сварочных напряжений</a> при сварке пластин встык, Т =/(//) — <a href="/info/249037">распределение температуры</a> по оси оу <Jx — f (х) а Оу = = /(</) —распределение остаточных <a href="/info/7310">продольных напряженнй</a> по осям Ох и Оу соответственно
На дугу также оказывает влияние продольное магнитное поле соленоида, параллельное оси столба дуги и электрическому полю. Такое магнитное поле не оказывает никакого действия на заряженные части- у цы, движущиеся в направлении электрического поля, но на заряженные частицы, перемещающиеся в поперечном направлении этого поля, оно оказывает заметное влияние. Так как температура центральной части столба дуги выше периферийной, то диффузия частиц начинается в направлении меньшей температуры по радиусу.  [c.13]

Тонкая пластина длиной k = 2 м и шириной а=1,5 м обтекается продольным потоком воздуха (рис. 41). Скорость и температура избегающего потока равны соответственио Шо = 3 м/с i o = 20° . Температура поверхности пластины с==90°С.  [c.59]

Лента обтекается продольным потоком воды. Скорость и температура набегающего потока и)о = 0,Г> м/с п /о=Ю° С.  [c.62]

Топкая пластина длиной 1=0,2 м обтекается продольным потоком ио Духа,. Скорость и температура набегающего потока равны соответственно auo==150 м/с п о = 20°С.  [c.64]


При турбулентном режиме течения газа в трубах, каналах и при продольном обтекании трубных пучков теплоотдача может быть подсчитана по формуле (5-7), но при этом поправка на изменение физических свойств с температурой (Ргш/Ргс)" несправедлива.  [c.98]

В теплообменнике шахматный пучок труб обтекается поперечным потоком трансформаторного масла. Внешний диаметр труб в пучке d=20 мм. Поперечный шаг Si=2,5d, продольный шаг S2 = = I,5d. Средняя скорость в узком сечении пучка и средняя температура масла соответственно равны w = 0,6 м/с и / = 40 С.  [c.144]

При изотермическом превращении в условиях средних температур происходит рост отдельных кристаллов в продольном и поперечном направлениях, однако скорости роста значительно ниже, чем при мартенситном превращении. Возникновение рельефа на полированной поверхности шлифа указывает на то, что а-фаза когерентно связана с аустенитом, а переход у->а происходит вследствие упорядоченного перераспределения атомов подобно мартенситному превращению.  [c.106]

Температуру подшипника снижают, применяя плавающие втулки (7), а у неподвижных втулок — увеличивая циркуляцию масла путем повышения давления подачи и введения в ненагруженной зоне продольных выборок,  [c.406]

В качестве примера вычислим взаимные перемещения точек Aj, А2 и Bj, В2 соответственно в горизонтальном и вертикальном направлениях для рамы (см. рис. 412) без учета действия температур. Определим только перемещения, вызванные изгибом, так как перемещениями от продольных деформаций и сдвига можно пренебречь. На рис. 429, б показаны составляющие суммарной эпюры изгибающих моментов в виде, удобном для применения способа Верещагина.  [c.425]

На рис. 5.2 показано влияние параметра Ре на интенсивность локального теплообмена при постоянной температуре стенки (Bi . Следует отметить некоторые особенности. Для случаев без учета осевой теплопроводности (Ре кривые 1 и 5) при переходе к более заполненному однородному профилю скорости возрастает интенсивность теплообмена как на начальном участке, так и в области стабилизированного теплообмена. Зависимость 2 для Ре = 100 практически совпадает с зависимостью 1, полученной без учета осевой теплопроводности (Ре т. е. при Ре > 100 влияние осевой теплопроводности можно не учитывать. Всем значениям параметра Ре при однородном профиле скорости (кривые 1-4) соответствует одно и то же предельное значение Nu в области стабилизированного теплообмена. Продольный перенос теплоты теплопроводностью (при Ре < 100) увеличивает как интенсивность теплообмена на начальном участке, так и длину этой зоны.  [c.102]

Будем решать систему уравнений (9. 1. 21), (9. 1. 22) с граничными условиями (9. 1. 23)—(9. 1. 25) в соответствии с [118] при помощи метода Кармана—Польгаузена (см., например, [2]). Представим продольную скорость (и , температуру 0 п концентрацию Фр в виде полинома второго порядка относительно параметра у/о., 1 = , 2, 3 ( 1 — толщина динамического, — тол-  [c.336]

В литературе не обсуждался вопрос о связи кризиса кипения с явлением предельного перегрева жидкости. Но его постановка термодинамически оправдана. Ясно, что более или менее длительное контактирование жидкости со стенкой возможно только при температуре стенки, меньшей, чем температура продольного перегрева жидкости для заданного давления. А контактирование жидкости со стенкой является необходимым условием пузырькового кипения на всей поверхности нагрева или на каком-нибудь ее участке. Так называемый первый кризис кипения соответствует началу нарушения пузырькового режима кипения. Затем идут промежуточная область, для которой характерно пространственно-временное чередование пузырькового и пленочного кипения, и, наконец, в точке второго кризиса кипения (А крг- Qnpi) заканчивается переход к пленочному кипению.  [c.61]

В работе П. Скофилда [42, с. 193—240] рассматривается теория корреляции флуктуаций в жидкости (плотности, температуры, продольного и поперечного импуль-  [c.37]

В 1879 г. физик Холл открыл явление, получившее название эффекта Холла и заключаюш,ееся в отклонении магнитным полем электронов в проводнике с током перпендикулярно направлению тока и поля. В 1886—1887 гг. была открыта группа термомагнитных явлений, которые проявляются в проводнике, находяш,емся в магнд1тном поле и имеющем градиент температуры. Здесь возникает поперечная разность потенциалов и поперечная разность температур, продольная разность потенциалов и температур — эффекты Нернста — Эттингсгаузена, Маджи, Риги—Ледюка [13]. В 1936 г. советский физик И. К. Кикоин показал, что электродвижуш,ая сила эффекта Холла определяется не вектором напряженности магнитного поля, а вектором намагничивания проводника [10].  [c.9]


На рис. 12.11 изображены результаты измерений [ ], равновесной температуры продольно обтекаемой плоской пластины при различных числах Рейнольдса Uoox/v, В ламинарной области результаты измерений довольно хорошо совпадают с теорией. При переходе ламинарного течения в турбулентное равновесная температура стенки внезапно возрастает.  [c.282]

Рассмотрим процесс геплоотдачи от потока теплоносителя к продольно омываемой им пластине. Скорость и температура набегаюп1,его потока постоянны и равны а/ и 1м (рис. 9.2).  [c.79]

Таким образом, высокотемпературные реакторы с шаровыми твэлами, выполненные по принципу одноразового прохождения активной зоны, наиболее полно удовлетворяют требованию достил<ения высокой температуры гелия на выходе из реактора. Возможности измельчения твэлов и перехода к непосредственному охлаждению гелием микротопливных частиц привели к идее создания газоохлаждаемого реактора-размножителя на быстрых нейтронах (БГР) с полыми коническими кассетами с засыпкой в них микротопливных частиц и продольно-поперечным охлаждением [10].  [c.7]

В этом случае при задержке во времени на переработку накопленного вторичного ядерного топлива 6 месяцев удалось бы получить время удвоения порядка 5 лет [И]. Наиболее подходящим вариантом реактора БГР, отвечающим этим условиям, является высокотемпературный реактор с засыпанным в пустотелых перфорированных кассетах керамическим микротопливом и продольно-поперечным охлаждением топливного слоя гелиевым теплоносителем. При температуре гелия на выходе из активной зоны 750—800° С удается снизить затраты энергии на прокачку гелия до 8% и обеспечить объемную плотность теплового потока 700 MBt/m при максимальной температуре топлива 1000° С [12].  [c.8]

Теплообмен с пучком труб наиболее детально изучен в [Л. 119]. Нагрев слоя песка при Осл = 0,12- 2,2 Mj eK производился с помощью 18 электрокалориметров D=18 мм, которые набирались в шахматные (продольный и поперечный шаги 4 и 3 1 и 0,75) и коридорные пучки (5j/D = S2/D = 2 и 1,5). Температура стенки электрокалориметров измерялась только для центрального ряда. Обнаружено, что в отличие от однородных сред теплоотдача первых двух рядов значительно выше, что объяснимо завершением тепловой стабилизации теплообмен с последующими рядами идентичен. Интенсивность теплообмена возрастает с уменьшением шагов, что объясняется возможным перемешиванием слоя. Теплоотдача шахматного пучка при Si/D = 4 и Sвлияние скорости оказалось тем же, что и для одиночной трубки. Обработка данных произведена для каждого пучка отдельно по зависимости (10-41). Однако в этом случае А и В — функции не только от d /D, но Si/D, S2/D и номера ряда труб. Погрешность определения Ми сл 19,9%. Отметим, что безразмерные  [c.352]

Тонкая иластинп длиной /о=125 мм обтекается продольным истоком жидкости. Температура набегающего потока о=20°С.  [c.61]

Плоская пластина длиной 1=1 м обтекается продольным потоком воздуха. Скорость и температура набегающего потока воздуха Шо = 80 м/с и о=10°С. Перед пластиной установлена турбули-зирующая решетка, вследствие чего движение в пограничном слое на всей длине пластины турбулентное.  [c.62]

Плоская пластина обтекается продольным потоком воздуха. Скорость и температура набегающего потока равны соответствеино Шо = 6 м/с и /а = 20° С,  [c.63]

Котельный пучок омывается продольным потоком дымовых газов. Трубы пучка внешним диаметром rf=80 мм и длиной 1=3 м расположены в коридорном порядке с шагом Si=200 мм и 2 = = 200 мм (рис. 5-9). Средняя температура газов /ж = 750° С средняя температура наружной поверхности труб с=250°С и средняя скорость движения газов w — 6 м/с. Объемнь1й состав газ ов (относительные парциальные давления) =76.  [c.97]

Пример 27-4. Гладкая пластина шириной 1,5 м и длиной I — 2,0 м обтекается продольным потоком воздуха с температурой = 20°С и со скоростью w = 4,0 м1сек. Вычислить коэффициент теплоотдачи а и тепловой поток Q, если температура поверхности плиты = 80° С.  [c.445]

Новые возможности создания металлических сотовых конструкций открывает метод сварки острофокусированным электронным лучом. Поток электронов высокой энергии проникает через довольно большую толщину металла. Сварочная температура возникает только в фокусе остальные зоны не вызывают существенного нагрева материала. Это позволяет сваривать стыки на любой глубине конструкции при одном и том же положении сварочного аппарата. Сварочную зону вглубь перемещают перефокусировкой луча с помощью собирательных электромагнитных катушек, а в поперечном и продольном направлениях - с помощью отклоняющих катушек. Таким образом можно последовательно проверить все внутренние стыки конструкции.  [c.267]

Этот метод интенсификации позволяет с помощью однофазного теплоносителя охлаждать сплошную стенку, подверженную воздействию больших тепловых потоков, например при конвективном охлаждении стенок ракетных двигателей (рис. 1.8) и лопаток их газовых турбин, элементов электронной аппаратуры и других теплонапряженных устройств. В частности, за счет охлаждения прокачкой воды через проницаемую подложку может быть обеспечена надежная рабрта лазерного отражателя. Такой способ охлаждения в настоящее время - единственный при малых размерах или сложной форме нагреваемых конструкций, в которых невозможно выполнить каналы для охладителя. Например, лопатки малых газовых турбин ракетньи двигателей с максимальной толщиной профиля порядка 3 мм, хордой около 2 см и длиной от 1 до 2 см обычно не охлаждаются, что ограничивает температуру газового потока и эффективность таких турбин. Изготовление лопаток из волокнистого металла 1 (рис. 1.9), покрытого снаружи тонким герметичным слоем керамики 2 и охлаждаемого продольным потоком газа, вытекающего через вершину, позволяет снять эти ограничения.  [c.12]


Интенсификация теплообмена особенно необходима в криогенных системах, где только так можно свести к минимуму площадь наружных поверхностей теплообменной аппаратуры. Некоторые из разработанных ранее теплообменных устройств с пористым заполнителем внутри каналов или в межгрубном пространстве созданы специально для криогенных температур. Например, в теплообменнике (см. рис. 1.10, а) во избежание снижения его эффективности за счет продольной теплопроводности пористый материал выполнен не сплошным, а в виде последо-вателыю расположенных отдельных вставок. Кроме того, с этой же целью в гелиевых проточных криостатах предложено использовать сетчатые металлические вставки с ярко выраженной анизотропией теплопроводности, у которых продольная теплопроводность значительно меньше поперечной.  [c.17]

Хсх/ Хт = 0,08RePr Re = Gd l и-При этом засыпка вместе с протекающим сквозь нее потоком рассматривается как некоторая гомогенная среда с одинаковой температурой и эффективными коэффищ1ентами продольной ХсП = + Хсц и поперечной теплопроводности. Здесь X — эффективный коэффициент теплопроводности среды с неподвижным теплоносителем. Из приведенных выражений следует, что эффективная теплопроводность является анизотропной величиной, зависящей от направления скорости потока.  [c.36]

Го) идет не только на подогрев G (t - to) входящего в нее охладителя, но и на повышение средней температуры to (нагрев) а° (7 - to) всего продольного потока. Здесь а° -коэффициент теплоотдачи от пористой стенки к оставшемуся в канале потоку. Соотношение между этими отдельными составляющими меняется в зависимости от параметров потока и отсоса охладителя, ошибка допущения G (t - to) = a (T to) или a = воэрастает по мере уменьшения отсоса охладителя и становится особенно большой при G О, когда а о, где о — коэффициент теплоотдачи от непроницаемой стенки. В этом случае отношение a /G = (t - to)l Т to) может стать значительно больше единицы. Повышение средней температуры теплоносителя Го при его движении вдоль проницаемой поверхности приводит к снижению его эффективности и это обстоятельство необходимо учитывать.  [c.51]

Известно, что при подводе охладителя через пористую поверхность происходит деформация профилей продольной скорости и температуры во внешнем пограничном слое. Профили скорости и температуры становятся менее заполненными, при этом увеличение интенсивности вдува охладителя ведет к более сильной их деформации. Таким образом, наличие поперечного подвода охладителя вызывает снижение градиентов скорости и температуры в пограничном слое на стенке из-за деформадаи профилей и при одновременном возрастании динамической и тепловой толщин пограничного слоя. Это вызывает уменьшение поверхностного трения и теплового потока на пористой стенке. С увеличением интенсивности вдува охладителя это уменьшение будет более сильным. Однако механизм охлаждения пористой стенки различен в зависимости от термодинамического состояния охладителя. Если охладитель газообразный, то температура стенки, соприкасающейся с горячим потоком газа, зависит от расхода охладителя и плавно уменьшается при его увеличении. В случае жидкого охладителя температура горячей поверхности при больших удельных расходах охладителя на единицу поверхности близка к температуре кипения при давлении горячего газа, омывающего пористую стенку. Между газовым потоком и пористой стенкой образуется жидкая пленка, толщина которой зависит от расхода охладителя. По мере умень-  [c.153]

Отметим, что, как следует из результатов решения задачи о теп.ломассообмене, рассмотренной в разд. 8.3, концентрация целевого компонента и температура на поверхности пленки слабо зависят от продольной координаты х. Тогда вместо условий (9. 1. 11), (9. 1. 14) и (9. 1. 15) на границе раздела фаз задаются величины s, и p)s, которые временно считаются постоян-пы.ми. В этом случае задачи о тепломассопереносе в газе и в пленке жидкости можно решать независимо. Решения этих задач будут паралштрнчески зависеть от величин s, Тя и (с ,,) . Последующая подстановка полученных решений в граничные условия (9. 1. 11), (9. 1. 14) и (9. 1. 15) даст возможность определить зависимость величин с , Т и (с ) от продольной координаты. Для процесса тепломассопереноса в пленке жидкости распределения температуры II концентрации целевого компонента имеют вид (см. разд. 8.3)  [c.335]

Рассматривается течение идеального вязкого газа вдоль боковой поверхности затупленного осесимметричного тела при числах Re>10 . Расчет ведется в заданной области Q (рис. 1.19). На границе Г2 задаются значения продольной и и поперечной v составляющих скорости, давления р, температуры Т и иачально-  [c.51]

В обычных сварочных дугах при атмосферном давлении наибольшее влияние продольное магнитное поле оказывает на диффузионную составляющую скорости ионов и электронов. Скорость диффузии их направлена по радиусу от центра дуги к периферии, где температура и концентрация меньше (рис. 2,39). В связи с тем что скорости диффузии в квазинейтральном столбе дуги равны Ve Vi, а масса те< .гт, импульсы, передаваемые нейтральным частицам от ионов, будут в тысячи раз больше, чем от электронов. Поэтому плазма столба дуги придет во вращательное движение, соответствующее движению в магнитном поле ионов. Столб дуги будет вращаться против часовой стрелки.  [c.84]

На рис. 11.8 в качестве примера представлены наблюдаемые деформации металла хи Т), г н Т), 82 (Л при сварке и дилатограм-ма металла Есв(7 ) для соответствующего термического цикла в продольном сечении, расположенном на расстоянии у=15 мм от оси шва пластины толщиной 6=10 мм из коррозионно-стойкой стали 12Х18Н10Т размером 400X400 мм, проплавляемой посередине неплавящимся вольфрамовым электродом в среде аргона (Усв=2,8 10 м/с), тепловая мощность =3670 Вт. Здесь результаты представлены в координатах деформация — температура с равномерной разбивкой температурной оси на стадии нагрева от нормальной до максимальной температуры и на стадии охлаждения от максимальной до нормальной температуры.  [c.421]

Эпюра остаточных напряжений, приведенная на рис. 11.11, в, характерна для сварки пластин из низколегированной и аустеиит-ной сталей, титановых сплавов или в общем случае для сварки металлов и сплавов, не претерпевающих структурных превращений при температурах 7<873...973 К. Максимальные остаточные напряжения 0 tmax при сварке аустенитных сталей обычно превосходят предел текучести. Это, по-видимому, связано с большим коэффициентом линейного расширения, а как следствие, большой пластической деформацией, вызывающей упрочнение металла с образованием высоких значений продольных остаточных напряжений. В титановых сплавах максимальные остаточные напряжения, как правило, ниже предела текучести основного материала в исходном состоянии и составляют (0,7...1,0) Oj. При этом высокие значения остаточных напряжений соответствуют сварке на интенсивных режимах с большой эффективной мощностью и большой скоростью.  [c.426]

При электрошлаковой сварке соединение формируется сразу по всей толщине. Возникающие остаточные напряжения в значительной степени зависят от толщины металла. При толщинах до 100 мм усадка металла шва и высокотемпературной около-шовной зоны в направлении толщины происходит свободно, поэтому остаточные напряжения в направлении толщины незначительные. Продольные остаточные напряжения Gx достигают предела текучести металла, и их распределение в поперечном сечении подобно случаю однопроходной сварки пластин встык. При дальнейшем увеличении толщины механизм образования остаточных напряжений изменяется, так как усадка металла в направлении толщины не может при этом происходить беспрепятственно. Вследствие этого возникают значительные остаточные растягивающие напряжения ст . С ростом толщины свариваемого металла при электрошлаковой сварке наблюдается неравномерность распределения температур по толщине, вызванная теплоотдачей с поверхностей. При этом температура в глубине шва выше, чем на поверхностных участках. На стадии охлаждения это приводит к появлению растягивающих поперечных напряжений Оу в глубине металла шва.  [c.429]



Смотреть страницы где упоминается термин Температура продольная : [c.405]    [c.433]    [c.307]    [c.358]    [c.156]    [c.187]    [c.432]   
Теория и приложения уравнения Больцмана (1978) -- [ c.423 , c.426 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте