Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Плотность потока теплового объемная

При температуре гелия 1500° С возможно получение неравновесной ионизации плазмы и осуществление экономичного процесса преобразования энергии в МГД-генераторе теплового потока с объемной плотностью 20—100 МВт/м канала [6].  [c.6]

Температурное состояние в области испарения и ее протяженность рассчитывались при средней интенсивности объемного теплообмена = = 3 10 Вт/ (м К). Для исследованного диапазона параметров это дает максимальную относительную протяженность этой области к - I =0,03, которая и использовалась в расчетах. Сравнение расчетных и экспериментальных данных по распределению температуры пористого металла показывает их хорошее совпадение в области испарения. Отсюда следует, что средняя интенсивность объемного теплообмена в ней по крайней мере не меньше величины = 3 10 Вт/(м К) (что соответствует ее качественной оценке, выполненной ранее), а при исследованном уровне плотностей внешнего теплового потока до <7 = 2,3 10 Вт/м протяженность области испарения мала и эту зону можно принять в виде поверхности фазового превращения.  [c.147]


Уравнение энергии. Выведем дифференциальное уравнение, описывающее температурное поле в движущейся жидкости. Полагаем, что жидкость однородна и изотропна, ее физические параметры постоянны, внутренние источники теплоты равномерно распределены во всем объеме жидкости. Под внутренними источниками теплоты понимают тепловыделения внутри тела (выделение теплоты в результате химических реакций, при прохождении электрического тока и т. д.), которые характеризуются объемной плотностью тепловыделения — тепловым потоком, отнесенным к единице объема и выражаемым в ваттах на кубический метр (Вт/м ).  [c.152]

В этом соотношении слагаемые в левой части представляют собой скорости изменения соответственно кинетической и внутренней энергии тела (и - массовая плотность внутренней энергии). Правая часть (4.2.7) состоит из следующих слагаемых работы, совершаемой поверхностными и массовыми силами в единицу времени, тепла, потерянного при взаимодействии с окружающей средой через поверхность 5, и тепла, полученного вследствие объемного взаимодействия с окружающей средой ( ,- - компоненты вектора плотности теплового потока г - массовая плотность мощности тепловых источников или стоков).  [c.183]

Энергетические единицы. Во всех областях физических явлений играют значительную роль такие величины, как работа. и энергия, объемная плотность энергии, мощность, поток энергии, плотность потока энергии. Единицы и размерности этих величин, разумеется, не зависят от того, какие конкретные явления рассматриваются. Но в каждой области эти величины приобретают свою специфику, что отражается и в их наименованиях. Например, говорят о потоке звуковой энергии, тепловом потоке, потоке вектора Умова — Пойнтинга и т. д. Поэтому энергетические величины и их единицы представлены почти во всех параграфах этой главы и в табл. П2—П7.  [c.29]

Подобная постановка задачи является фундаментальной в широком классе задач, посвященных проблемам переноса. Рассмотрим перенос тепла в плоском слое серой поглощающей среды, образованном плоскопараллельными диффузно излучающими и отражающими поверхностями. Задача сводится к определению плотности результирующего теплового потока по заданному температурному распределению и температурного распределения в слое по заданным значениям соответственно плотности объемного результирующего излучения и температур граничных поверхностей. Для этого воспользуемся уравнениями (20.136) и (20.137).  [c.539]


В настоящем разделе будет рассмотрен метод определения стационарного распределения температуры и плотности результирующего теплового потока при совместном действии теплопроводности и излучения в приближении оптически толстого слоя. Предположим, что-слой является оптически толстым (т. е. pZ, = = ТоШ I) и серым, имеет черные границы т = О и t = то, которые поддерживаются при постоянных температурах fi и Гг соответственно, и что объемная мощность внутренних источников энергии постоянна и равна h.  [c.495]

Уравнения (4.12) —(4.14) не учитывают сжимаемость и вязкую диссоциацию, свойства смеси приняты постоянными, за исключением изменения плотности от температуры и концентрации в членах с подъемной силой. Учет переменности свойств среды практически не влияет на выходные характеристики (тепловые и массовые потоки на поверхности) тепломассообменного пограничного слоя. Аналитическое решение системы уравнений (4.12) — (4.14) выполнено методом Г. Сквайра, предполагающего интегрирование уравнений количества движения (4.12) и энергии (4.13) в одном верхнем пределе, равном толщине теплового пограничного слоя, с введением в уравнение движения дополнительной функции с размерностью скорости, являющейся функцией числа Рг. В членах с подъемной силой коэффициенты тер.мического и теплового объемного расширения, являющиеся функциями температуры и концентрации  [c.137]

При проведении теплотехнических исследований, в конечном счете, всегда необходимо определение не объемных, а массовых расходов потоков, так как тепловые, силовые или иные энергетические преобразования, происходящие в объектах исследования определяются не объемом, а количеством массы рабочих тел — носителей энергии. Объемные расходомеры могут использоваться только тогда, когда с необходимой точностью известна плотность потока в моменты измерений. В противном случае необходимы специальные измерители массового расхода жидкостей, газов, их смесей или потоков, содержащих твердые включения различных размеров. Многочисленные предложенные и проверенные в действии схемы массовых расходомеров в соответствии с условиями применения могут быть отнесены к одной из трех категорий.  [c.375]

Приведены теоретический расчет коэффициента сопротивления струи в шаровой ячейке методика и результаты экспериментальных работ ио гидродинамическому сопротивлению, среднему и локальному коэффициентам теплоотдачи ири течении газа через различные укладки шаровых твэлов. На основе обобщенных критериальных зависимостей коэффициентов сопротивления и теплообмена разработана методика оптимизационных расчетов размера шаровых твэлов и геометрических размеров активных зон для различной объемной плотности теплового потока. Приводится количественный расчет по предложенной методике.  [c.2]

Использование в качестве охладителя инертного газа гелия. Уже при давлении 4—5 МПа гелиевый теплоноситель обеспечивает хорошие условия теплоотвода и позволяет достичь объемной плотности теплового потока на уровне 6—8 кВт/л при сравнительно умеренной потере энергии на прокачку теплоносителя. Гелий как теплоноситель имеет по сравнению с другими газами ряд преимуществ высокую теплоемкость и теплопроводность, термическую и радиационную стойкость, химическую стабильность и инертность к конструкционным материалам, минимальное сечение поглощения нейтронов.  [c.3]

В проекте реактора ВГР по принципу одноразового прохождения активной зоны шаровыми твэлами мощностью 500 МВт с уран-плутониевым топливным циклом приведены данные по температуре газа и топлива активной зоны с профилированием тепловыделения и без профилирования. Оптимальная концентрация— рс/рм=350, средняя объемная плотность теплового потока в зоне — 5 кВт/л. Активная зона высотой 568 см и диаметром 473 см окружена графитовым отражателем толщиной 40 см сверху, 150 см снизу и 100 см сбоку и заполнена шаровыми твэлами диаметром 60 мм. Применение двух зон с разным обогащением снижает радиальную неравномерность и повышает температуру гелия на выходе из реактора от 810 до 950° С.  [c.21]

Средняя объемная плотность теплового потока, 615 277  [c.32]


Тепловая мощность, МВт Электрическая мощность, МВт Средняя объемная плотность теплового потока, кВт/л  [c.33]

Однако использование стержневых вентилируемых твэлов с оболочками из нержавеющей стали и окисного топлива, а также умеренное давление гелия и обусловленная этим малая объемная плотность теплового потока не позволили получить в проектах реакторов БГР существенно меньшее время удвоения топлива по сравнению с реактором БН.  [c.33]

Авторы исследования ставили своей задачей разработку такого варианта реактора БГР, который мог бы конкурировать по стоимости вырабатываемой электроэнергии с ректорами БН и ВВЭР. Основное внимание было обращено на максимальное упрощение и удешевление оборудования, что привело к низкому давлению гелия в 1, 2 и 4 вариантах (7 МПа). Это обусловило низкую объемную плотность теплового потока в актив-  [c.33]

Средняя объемная плотность теплового потока, кВт/л Параметры гелия давление, МПа температура на выходе,  [c.34]

Несмотря на малые размеры сферических микрочастиц, гидродинамическое сопротивление кассеты оказывается сравнительно невысоким (не превышает 2—37о абсолютного значения давления гелия в контуре) при объемной плотности теплового потока более 500 кВт/л.  [c.38]

При применении шаровых твэлов в реакторах ВГР с высокой объемной плотностью теплового потока возникает необходимость увеличения удельного массового расхода теплоносителя. Диапазон изменения чисел Re в реакторах с шаровыми твэлами лежит в пределах S-IO —5-10 (при номинальной мощности реакторов). К сожалению, большинство исследований по определению гидродинамического сопротивления слоя шаров относится к области чисел Re<10 .  [c.57]

Критерий энергетической оценки Е для реакторов с шаровыми твэлами определяется четырьмя независимыми друг от друга сомножителями первый из них характеризуется только параметрами шаровой укладки (диаметр шарового твэла, объемная пористость активной зоны т) второй отражает физические свойства газового теплоносителя (теплопроводность X, удельная теплоемкость Ср, газовая постоянная R и динамическая вязкость ji) третий определяется параметрами газового теплоносителя (средним давлением в активной зоне р, нагревом газа в зоне ДГг, средней абсолютной температурой 7 pi i четвертый — средней объемной плотностью теплового потока qv и геометрией активной зоны.  [c.92]

Если влияние абсолютного давления общепризнано и не требует доказательства, то влияние нагрева газа в реакторе на затраты энергии обычно не рассматривается. На самом Деле, повышение температуры газа на выходе из активной зоны хотя и увеличивает средний уровень абсолютной температуры, но оказывается весьма благоприятным. Так-, при одинаковой температуре газа на входе в реактор на уровне 550 К повышение средней температуры газа на выходе из активной зоны с 1000 до 1200 К увеличивает значение третьего комплекса в 1,82 раза (при сохранении одинакового значения давления)-. Влияние на критерий энергетической оценки четвертого сомножителя не требует особых пояснений, так как очевидно, что уплощение активной зоны приводит к увеличению значения Е, а увеличение объемной плотности теплового потока активной зоны к существенному ухудшению критерия Е.  [c.93]

Увеличение тепловой мощности реактора даже при сохранении неизменным принятого значения объемной плотности теплового потока qv также приводит к уменьшению критерия энер-  [c.93]

Средняя объемная плотность теплового потока- вг твэлах для бесканальной активной зоны  [c.95]

Рис. 5.5. Зависимость размеров шаровых твэлов и относительной потери давления от объемной плотности теплового потока канальных активных зон с объемной пористостью п = 0,3 для N=4 и Af=l,5 и уплотненной бесканальной активной зоны (т=0,259) Рис. 5.5. <a href="/info/269524">Зависимость размеров</a> шаровых твэлов и <a href="/info/108802">относительной потери</a> давления от объемной плотности теплового потока канальных активных зон с <a href="/info/286850">объемной пористостью</a> п = 0,3 для N=4 и Af=l,5 и уплотненной бесканальной активной зоны (т=0,259)
При неравномерном обогреве развитое паверхностное кипение устанавливается в условиях не стабилизированного в тепловом отношении потока жидкости. Когда величина то при заданном недогреве жидкости на входе в канал развитое поверхностное кипение устанавливается при более низких значениях средней плотности, тетлового потока ср по сравнению с q при равномерном обогреве. В условиях возрастающего по длине трубы теплового потока истинное объемное паросодержание <р увеличивается не 1 оль>к,о вследствие прогрева основной массы жидкости, но н вследствие роста q. Таким образом, условия возникновения развитого рцения, дри неравномерном обогреве трубы существенно отлича-  [c.268]

В главе 5 приведены расчетные соотношения для определения коэффициента взаимной облученности для системы факел —строительная конструкция, выведенные на основе метода суперпозиций [8]. Эти соотношения позволяют рассчитать среднее значение эффективного лучистого теплового потока в указанной системе, считая, что факел является плоской поверхностью с соответствующими оптическими характеристиками и характерными размерами. Использование этого метода расчета дает хорошие результаты при определении интегральных характеристик развития пожара. Однако для анализа теплового воздействия локального очага пожара на различные объекты, находящиеся в помещении, использование средних значений плотностей лучистых тепловых потоков может привести к недоучету опасности этого воздействия. В связи с конечными размерами элементов системы и существенной неоднородностью очага пожара (факела), его объемной структурой падающий лучистый тепловой поток на поверхности различной ориентации будет распределен неравномерно по координате с наличием максимулма. Характер воздействия локального очага пожара на различные объекты будет  [c.173]


Плотность лучистого потока поверхностная Плотность потока ионизирую щих частиц или фотонов Плотность теплового потока поверхностная Плотность теплового потока объемная Плотность электрического за ряда, линейная Плотность электрического за ряда, объемная Плотность электрического за ряда, поверхностная Плотность электрического то ка, линейная Плотность электрического тока, поверхностная Плотность энергии излучения спектральная, по длине волиы  [c.220]

Реализация этого принципа позволяет выравнить температуры топлива в объеме активной зоны, уменьшить разницу между температурами топлива и гелия, добиться увеличения объемной плотности теплового потока.  [c.6]

Шаровая форма твэла позволяет добиться меньших температурных напряжений в оболочке по сравнению с напряжениями в цилиндрических стержневых твэлах при одинаковой объемной плотности теплового потока и равных геометрических размерах. Шаровая форма также допускает значительное уменьшение их размеров, поскольку обычно такие твэлы не являются конструкционными элементами активной зоны, а заполняют в виде шаровой насадки либо всю активную зону, как в реакторах AVR, THTR-300, либо какие-то ее части.  [c.7]

В этом случае при задержке во времени на переработку накопленного вторичного ядерного топлива 6 месяцев удалось бы получить время удвоения порядка 5 лет [И]. Наиболее подходящим вариантом реактора БГР, отвечающим этим условиям, является высокотемпературный реактор с засыпанным в пустотелых перфорированных кассетах керамическим микротопливом и продольно-поперечным охлаждением топливного слоя гелиевым теплоносителем. При температуре гелия на выходе из активной зоны 750—800° С удается снизить затраты энергии на прокачку гелия до 8% и обеспечить объемную плотность теплового потока 700 MBt/m при максимальной температуре топлива 1000° С [12].  [c.8]

Особенность этих-реакторов — бесканальная активная зона, образованная графитовой кладкой, и коническая конфигурация нижнего отражателя — пода с одним центральным каналом выгрузки шаровых твэлов, заполняющих собственно активную зону. И опытный, и промышленный прототипы энергетического реактора выполнены по одной топливной схеме с многократной перегрузкой шаровых твэлов, вызванной существенной неравномерностью скоростей прохождения активной зоны шаровыми твэлами при наличии только одной выгрузки. В настоящее время этот существенный недостаток конструкции подробно обсуждается специалистами [18]. Предложены мероприятия, связанные с усложнением конструкции, но позволяющие обеспечить более равномерное продвижение всех шаровых твэлов и осуществить принцип одноразового прохождения активной зоны. Как указывалось выше, это даст возможность получить большие объемную плотность теплового потока и глубину выгорания и более высокую температуру гелия на выходе из реактора.  [c.17]

Важной характеристикой топливного цикла является энергонапряженность активной зоны. Увеличение энергонапряженности при постоянном ядерном соотношении рс/рм и продолжительности приводит к уменьшению количества ежегодно перерабатываемого ядерного топлива, а также размеров активной зоны и капитальных затрат, но повышает температуру ядерного топлива и затраты энергии на прокачку теплоносителя. По данным фирмы Дженерал атомик , для реакторов типа HTGR оптимальной по стоимости электроэнергии является объемная плотность теплового потока 7,5 кВт/л при ядерном соотношении рс/рм = 240 и кампании топлива примерно четыре года [20].  [c.18]

Неравномерность распределения тепловыделения по высоте и радиусу активной зоны с шаровыми твэлами, особенно в варианте бесканальной активной зоны, существенным образом сказывается на температуре топлива и, следовательно, на объемной плотности теплового потока и энергонапряженности ядерного топлива.  [c.18]

В этом направлении ведутся поиски конструктивных решений, так как реактор, действующий по принципу одноразового-прохождения, несомненно, является шагом вперед по сравнению с известным реактором THTR-300. В нем обеспечивается получение более высоких температур теплоносителя на выходе-из реактора для заданной объемной плотности теплового потока и более равномерное и глубокое выгорание топлива.  [c.25]

В 1969 г. Ок-Риджской лабораторией и фирмами Галф дженерал атомик и Бабкок энд Уилкокс под руководством Отделения реакторов и технологии КАЭ были выполнены расчетные проработки газоохлаждаемого реактора-размножителя, которые показали, что использование в таком реакторе разработанных для БН стержневых твэлов со стальными оболочками и окисным уран-плутониевым топливом позволяет получить более высокий коэффициент воспроизводства, однако объемная плотность теплового потока активной зоны оказывается меньшей, что существенно снижает преимущества реакторов ВГР. Переход в реакторах ВГР к более теплопроводному карбидному топливу и использование более тонких стальных покрытий и конструкции вентилируемых твэлов позволяет существенно увеличить объемную плотность теплового потока, что наряду с большим коэффициентом воспроизводства обеспечивает их решающее преимущество, по сравнению с реакторами ВН, в снижении почти вдвое времени удвоения ядерного топлива. В табл. 1.6 приведены результаты исследований влияния вида топлива на важнейшие характеристики реактора ВГР мощностью 1 млн. кВт с обычными стержневыми твэлами и температурой металлической оболочки 700° С.  [c.32]

Впервые в мире на совещании экспертов МАГАТЭ по перспективам развития реакторов Б ГР в 1972 г. в Минске советскими специалистами А. К. Красиным, Н. Н. Пономаревым-Степным, С. М. Фейнбергом были поставлены задачи по созданию газоохлаждаемых реакторов-размножителей с временем удвоения топлива примерно четыре-пять лет. При таком времени удвоения топлива открывается возможность увеличения темпов развития АЭС в стране при запланированных потребностях в урановом сырье [11]. Условием получения столь малого времени удвоения топлива в реакторах-размножителях является использование карбидного ядерного топлива, высокие объемная плотность теплового потока в активной зоне и давление теплоносителя. В дальнейшем эти концепции были воплощены в разработки проектов реакторов-размножителей с газовым охлаждением [12].  [c.36]

Объемная плотность теплового потока 700 кВт/л и высо кая температура гелия на выходе из реактора (850° С) позволяют использовать в дальнейшем в качестве силовой установки не паровые турбины, а газотурбинную установку. По проведенным оптимизационным расчетам в таком реакторе можно получить время удвоения топлива лет при времени переработки воспроизведенного топлива 0,5 года [12].  [c.37]

Шаровые твэлы высокотемпературного реактора-размножителя БГР, по сравнению с твэлами реактора ВГР, облучаются в активной зоне на порядок большим интегральным потоком быстрых нейтронов (10 нейтр./см ), имеют на два порядка большую среднюю объемную плотность теплового потока (700 кВт/л) и примерно втрое большую энергонапряженность ядерного топлива (400 кВт/кг) при практически одинаковой глубине выгорания ядерного топлива. Помимо этого, защитные оболочки микротвэлов и конструкционные материалы кассет не могут содержать большого количества легких ядер, смягчающих спектр нейтронов в активной зоне реактора БГР, и, следовательно, толщина защитных оболочек должна быть минималь ной, что затрудняет решение вопросов конструкции.  [c.37]

Каждый из перечисленных сомножителей воздействует на критерий энергетической оценки Е, но для выбранного газового охладителя практически второй сомножитель остается постоянным и независимым от параметров газа и характеристик активной зоны. Наиболее сильно действует на критерий Е третий и четвертый сомножители при увеличении абсолютного давления или нагрева газа в активной зоне затраты энергии на тепло-съем значительно уменьшаются, и, наоборот, увеличение средней объемной плотности теплового потока или высоты активной зоны значительно увеличивают затраты энергии при теплосъеме.  [c.92]


Задача состоит в разработке метода расчета для выбора геометрических размеров твэлов для двух указанных схем с учетом гидродинамического сопротивления Ар, средней объемной плотности теплового потока qv и максимально допустимой температуры топлива в шаровых твэлах как для случая гомогенного твэла, когда микротвэлы размещены во всем объеме шарового твэла, так и для случая гетерогенного твэла, когда топливная зона с микротопливом в виде сферического слоя занимает только часть его объема.  [c.94]

Чтобы исключить влияние средней объемной плотности теплового потока <7v на температуру топлива и гидродинамическое сопротивление Ар, целесообразно определять относительную разность температур ATjAT и относительное сопротивление AplApa, приняв в качестве эталона (базового варианта) наиболее простой вариант.  [c.97]

Для сопоставления вариантов и выбора оптимального была проведена серия количественных расчетов на основе зависимостей AT/ATs и Ар1Арв высокотемпературного реактора при различной объемной плотности теплового потока qv- Параметры гелия давление — 5 МПа, температура на входе в активную зону — 300° С, средняя температура на выходе — 950° С, тепловая мощность реактора — 1000 МВт.  [c.100]

Рис. 5.4. Зависимость размеров шаровых твэлов d (сплошные линии) и относительной потери давления Др/р (пунктир) от объемной плотности теплового потока бескаиальной и канальной активных зон при одинаковом значении объемной пористости т = 0,4 Рис. 5.4. <a href="/info/269524">Зависимость размеров</a> шаровых твэлов d (<a href="/info/232485">сплошные линии</a>) и <a href="/info/108802">относительной потери</a> давления Др/р (пунктир) от объемной плотности теплового потока бескаиальной и канальной активных зон при одинаковом значении объемной пористости т = 0,4
В табл. 5.2 показаны для различных значений средней плотности теплового потока в твэлах относительный объем твэлов в активной зоне, размеры гомогенных и гетерогенных твэлов (й/ серд=2,6) и относительная потеря давления газа в активной зоне Ар/р. Расчеты были выполнены для всех описанных ранее пяти вариантов активной зоны при изменении объемной плотности теплового потока от 5 до 15 МВт/м в предположении, что в активной зоне по принципу одноразового прохождения применено профилирование тепловыделения по радиусу за счет разного обогащения ядерного топлива в центральной и периферийной зонах. В горячей точке на оси реактора вблизи графитового пода относительное тепловыделение принято равным 0,6 среднего значения, а /Сг 1,5 по всей зоне. В расчете по зависимостям (5.21) и (5.23) выбиралось такое значение dn, чтобы Ксуслн = 10 Кроме того, считалось, что диаметр активной зоны равен ее высоте для всех значений qy.  [c.102]


Смотреть страницы где упоминается термин Плотность потока теплового объемная : [c.489]    [c.99]    [c.62]    [c.8]    [c.20]    [c.32]    [c.94]   
Внедрение Международной системы единиц (1986) -- [ c.51 ]



ПОИСК



Плотность объемная

Плотность потока

Плотность теплового

Плотность теплового потока



© 2025 Mash-xxl.info Реклама на сайте