Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Жидкости ионные

При переходе от дистиллированной воды к какому-либо ее раствору поверхностный слой раствора оказывается обогащенным или обедненным молекулами или ионами растворенного вещества относительно их общей концентрации в массе раствора. При возникновении в морской воде или каком-либо ином солевом растворе пузырька газа или пара в момент его появления состав раствора вблизи него будет таким же, как и внутри жидкости. Ионы солей, обладающие более сильными полями, втягиваются внутрь жидкости быстрее, чем другие молекулы. Таким образом, концентрация молекул с более слабым полем в поверхностном слое повышается. Окончательное равновесие обычно устанавливается через малую долю секунды, и на поверхности пузырька располагается пленка дистиллята.  [c.134]


Метод гетерофазного взаимодействия основан на реакции между твердым веществом и находящимися в жидкости ионами другого элемента. При гетерогенном взаимодействии возможны сорбционные, ионообменные и химические реакции в зависимости от природы реагирующих веществ. Реакция протекает при сравнительно низких температурах, т. е. при таких, когда образуется новое соединение. В качестве жидкой фазы обычно применяют раствор аммиака, в который вводят ионы реагирующего вещества. Так, например, при синтезе алюмо-магнезиальной шпинели в качестве твердой фазы используют гидрооксид или соли алюминия, а жидкой фазой является аммиак, содержащий ионы магния. В результате реакции образуется аморфная фаза смешанных гидрооксидов алюминия и магния. После отмывки и сушки осадок подвергается термической обработке, при которой формируется шпинель., Метод гетерогенного синтеза перспективен в целях введения в исходный состав твердого вещества различных добавок в малых количествах.  [c.40]

Если пар любого вещества адиабатически расширяется и охлаждается, то оп в некоторый момент становится насыщенным, а затем пересыщенным, после чего начинается конденсация. Известно, что конденсация сильно облегчается в присутствии ионов, пылинок, инородных частиц, которые становятся центрами конденсации и вокруг которых образуются капельки жидкости. Ионы и пылинки создают лишь более благоприятные условия для скорейшего образования центров конденсации, но их присутствие совсем не обязательно. В чистом пересыщенном паре центры конденсации появляются в результате слипания молекул в молекулярные комплексы. По достижении так называемых критических размеров комплексы делаются устойчивыми, не распадаются и обнаруживают тенденцию к дальнейшему росту и превращению в капельки жидкости.  [c.454]

Возможно, что ионы он имеют большее сродство к металлу, чем ионы Н+, этим, по-ви-димому, можно объяснить, что металлы часто разрушаются меньше кислотами, чем щелочами чем это можно было ожидать), поскольку на границе раздела металл — жидкость ионов ОН" больше, а ионов Н- меньше, чем в объеме жидкости.  [c.507]

В состоянии динамического равновесия раствор электролита характеризуется определенной степенью диссоциации а, определяющей число носителей тока в жидкости — ионов противоположного знака. Степень диссоциации а зависит от температуры, концентрации раствора и относительной диэлектрической проницаемости г растворителя (111.1.2.6°). Ионы в электролитах движутся хаотически до тех пор, пока в жидкость не опускаются электроды (п. Г). Тогда на хаотическое движение ионов накладывается их упорядоченное движение к соответствующим электродам и в жидкости возникает электрический ток (п. 1°).  [c.230]


Сходные модели предназначались для описания искусственных материалов (см. [3]), близких по свойствам к костной ткани и предназначенных для имплантации. При этом принимались во внимание три компоненты (основная твердая фаза и находящиеся в жидкости ионы двух знаков), электретный эффект (т.е. спонтанное, не связанное с напряжениями, электрическое поле) и несколько более обширный, чем в [44], набор перекрестных необратимых эффектов.  [c.14]

Разность потенциалов может возникать не только между двумя металлами в электролите, но и при контакте двух растворов, различающихся по составу или концентрации. Эта разность потенциалов называется потенциалом жидкостной границы, а его знак и размер определяются относительной подвижностью ионов и различием их концентраций на границе жидкостей. Например, через границу раздела между разбавленной и концентрированной соляной кислотой ионы Н" движутся с большей скоростью, чем С1 (подвижности при бесконечном разбавлении равны, соответственно, 36-10 и 7,9-10" см/с). Таким образом, разбавленный водный раствор приобретает положительный заряд по отношению к концентрированному. Ионы К" и С1 имеют примерно одинаковую подвижность, поэтому диффузионные потенциалы на границе между разбавленным и концентрированным КС1 невелики по сравнению с НС1. Если растворы НС1 насыщены КС1 и ток через границу жидкостей переносится в основном ионами К" и С1 , то потенциал жидкостной границы очень мал. Когда имеется граница соприкосновения двух жидкостей, использование насыщенного раствора КС1 позволяет уменьшить потенциалы жидкостной границы.  [c.42]

Чаще всего в качестве дисперсионной жидкости применяют этанол, метанол, ацетон, нитрометан, амилацетат, глицерин и т. д., а в качестве стабилизаторов — ионы, обладающие сферической абсорбционной способностью, такие как Ре+ , А1+ Н+, La+ или как ионы жирных кислот, нитроцеллюлозы и т. п.  [c.99]

При растворении электролита в жидкости, например хлорида натрия в воде, взаимодействие молекул жидкости с молекулами электролита ослабляет связь между частями молекул электролита и некоторые из них разделяются на положительный И отрицательный ион. Разделение молекул электролита на ионы происходит за счет энергии теплового движения молекул. В электрическом поле ионы электролита приходят в движение поло-  [c.163]

Глезер показал, что жидкость, приведенная в перегретое состояние (когда давление насыщенных паров над ее поверхностью больше гидростатического давления), вскипает не сразу, она может сохранять это состояние до нескольких десятков миллисекунд. Если в это время (называемое временем чувствительности) через объем жидкости пролетит заряженная частица, то из-за местного перегрева жидкости, вызванного прямой передачей кинетической энергии от возникших на пути частицы ионов молекулам жидкости, образуются мельчайшие зародышевые пузырьки пара, которые затем быстро разрастаются до видимых размеров. В этот момент рабочий объем камеры освещается импульсным ИСТОЧНИКОМ света и фотографируется двумя или несколькими фотоаппаратами для получения пространственной картины зарегистрированного явления.  [c.164]

Мандельштам предположил, что флуктуации плотности в кристаллах и жидкостях, о которых идет речь в теории рассеяния Эйнштейна, в действительности являются реальными акустическими волнами Дебая. Иными словами, флуктуации плотности в кристалле имеют периодичность, определяемую частотами этих волн. Мы можем рассматривать данные волны как стоячие или как бегущие. В первом случае кристалл можно представить как пространственную дифракционную решетку, состоящую из системы сгущений и разрежений плотности (система стоячих воли), и рассеяние света на такой решетке должно быть подобным рассеянию рентгеновских лучей обычной кристаллической решеткой. Различие заключается в том, что рассеяние света происходит па периодических сгущениях и разрежениях плотности, а рассеяние рентгеновских лучей — на периодически расположенных атомах, ионах или молекулах. Дебаевский спектр упругих волн включает частоты 10 °—10 Гц, т. е. относится к гиперзвуковой области.  [c.122]

Если капли в паре приобретают электрический заряд, то они начинают расти, даже будучи очень малыми, и не только в пересыщенном паре, но и в паре, не достигшем насыщения. Действительно, пусть капля радиуса г приобретает ион с зарядом е и радиусом а при равновесии ион сосредоточивается в центре капли. Если такая капля начинает расти, то это приводит к уменьшению энергии Гиббса системы. В самом деле, аналогично формуле (11.14), выражение для ЛС при образовании вокруг иона капли жидкости  [c.363]


Образование капелек жидкости происходит особенно интенсивно, если в паре имеются пылинки или электрические заряженные частицы (в частности, ионы), которые могут служить центрами конденсации. В этом случае, наиболее типичном для обычных условий, достаточно небольшого сжатия насыщенного пара, чтобы началась его конденсация.  [c.225]

В жидких лазерных материалах может быть достигнута концентрация активных ионов того же порядка, что и в лазерных стеклах. Это позволяет получить большие энергии и мощности излучения с единицы объема активного вещества. В то же время сильная зависимость показателя преломления от температуры обусловливает значительные оптические неоднородности, возникающие при накачке активной среды, что приводит к ухудшению генерационных характеристик лазеров и увеличению расходимости лазерного пучка. Применение прокачки активной жидкости через лазерную кювету позволяет реализовать как периодический, так и непрерывный режим работы лазера.  [c.948]

Способностью к диффузии обладают мельчайшие частицы вещества (отдельные молекулы, атомы или ионы), а также более крупные частицы, хорошо видимые в микроскоп, находящиеся среди молекул газа или жидкости и участвующие в броуновском движении.  [c.80]

Для газа числовое значение коэффициентов диффузии и вязкости имеет один порядок, поэтому РГд 1. Иначе обстоит дело в жидкостях. Коэффициент кинематической вязкости подвижных жидкостей типа воды составляет около 10 см /с. Коэффициент диффузии молекул и ионов в водных растворах имеет порядок D = 10" см с, макромолекул —D— 10 см /с. Поэтому в воде и сходных жидкостях будет РГд 10. При возрастании вязкости коэффициент диффузии уменьшается по закону  [c.237]

Принципиальная схема электрогидродинамического генератора показана на рис. XV.34, а, а генератор наиболее распространенной конструкции приведен на рис. XV.34, б. Жидкость, подаваемая насосом, со скоростью проходя через ионизационную камеру, переносит ионы на коллектор, вызывая во внешней сети, имеющей сопротивление R, ток 1 с разностью потенциалов U.  [c.461]

Г. И. Сканави). В состоянии поставки технически чистые трансфор маторные масла содержат в 1 м от 10 до 10 микрочастиц с размером до 100 мкм, среди которых больше всего содержится частиц с размерами от 2 до 10 мкм, т. е. частиц коллоидного размера. Такие частицы абсорбируют на свою поверхность имеющиеся в жидкости ионы, заряжаются и обусловливают перенос заряда, т. е.  [c.142]

Главной причиной коррозии. материала колонн считают не уксусную кислоту (содержание менее 1%), а сохраняющиеся в жидкости ионы хлора, по отношению к которым хромоникелевая сталь отличается очень малой устойчивостью. На этом основании было предложено в будущем изготавливать куб и колонну из хромоникелемолибденовой стали Х18Н12М2Т, несколько более устойчивой к воздействию горячих растворов, содержащих ионы хлора.  [c.36]

Как можно было уже заметить, в настоящее время наибольшее распространение в вакуумной технике получили пароструйные насосы, в которых в качестве рабочей жидкости используются различные сорта неорганических и кремнийорганических масел. Однако в целом ряде случаев (ртутные выпрямители, масс-спектрометры, установки для откачки изделий с ртутными парами и т. д.) применяются парортутные высоковакуумные и бустерные насосы. В установках, в которых по ка-ким-либо причинам недопустимо применение пароструйных насосов, могут быть применены насосы без рабочих жидкостей — ионные насосы, сорбционно-ионные насосы, молекулярные насосы, механические двухроторные. насосы типа воздуходувки Рутса и др. Большая часть из них благодаря своим хорошим вакуумным параметрам после организации серийного выпуска безусловно найдет широкое применение в промышленных вакуумных установках.  [c.113]

Стабильное существование парогазовых пузырьков в жидкости наиболее правдоподобно объясняется ионной теорией [16, 17]. Предполагается что на поверхности пузырька имеются равномерно распределенные одноименные заряды, обусловленные находящимися в жидкости ионами. Отталкивание этих зарядов предотвращает смыкание пузырька. Наличие электрических зарядов на поверхности пузырька давно установлено экспериментально [18], но механизм попадания ионов на поверхность пузырьков в воде только недавно был исследован Акуличевым [19].  [c.172]

Лиофобные или лиофильные свойства проницаемых материалов в сочетании с малым диаметром пор обеспечивают достаточно эффективную сепарацию парожидкостной смеси, что особенно важно, например, для забора топлива из баков в условиях невесомости. На этом же принципе основана работа трубчатого испарителя для получения паров ртути в ионном двигателе. Пористая вставка из вольфрама внутри молибденовой трубки нагревается размещенным на ее внешней поверхности электрическим нагревателем. Жидкая ртуть под давлением подается в пронш,аемую вставку и испаряется. Вставка одновременно выполняет роль парожидкостного сепаратора, препятствуя протоку сквозь нее жидкой ртути. В том случае, когда жидкость смачивает нагреваемую пористую матрицу, на ее выходную поверхность для исключения прорыва жидкости и получения сухого пара помещают слой проницаемого лиофобного материала, например фторопласта.  [c.16]

Поток гранулированных твердых тел в виде уплотненной или плотной фазы можно наблюдать при протекании процесса Худ-ри ), в установках каталитического крекинга и в противоточном аппарате ионного обмена. Трудность в достижении устойчивого состояния в условиях противотока частиц смолы и жидкости стимулировала исследование напряжений в твердых телах, возникающих как в прямоточном, так и в противоточном движении. Авторы работы [306] определили силы, которые необходимы, чтобы привести в движение частицы смолы в слое, через который течет жидкость. В работе [157] исследовались силы, действующие в гранулированных твердых веществах, движущихся вниз под действием силы тяжести, без учета потока жидкости. Кригер и Дугерти [440] изучали гидродинамические взаимодействия в плотной системе Мецнер и Витлок [535] объяснили явление расширения.  [c.427]


Жидкости-электролиты представляют собой растворы каких-либо веществ в воде, либо расплавы солей сульфидов, окислов и т. п. Ионы, находившиеся ранее в узлах кристаллической решетки, в электролите приобретают большую подвижность и могут служить носителями тока. Проводимость электролита зависит от природы, концентрации и коэффициента активности ионов. Все эти параметры сильно зависят от температуры электролита. В растворе ионы обычно менее активны из-за сольватирования их молекулами растворителя, что видно из приведенных ниже данных В. В. Фролова о числе ионов п, и удельной проводимости  [c.35]

Статистическая физика—наука о самых общих свойствах макроскопических объектов, т.е. таких объектов, которые составлены из множества микроскопических частиц. Этими частицами могут быть, например, атомы или молекулы, и тогда мы имеем дело с неметаллически1Щ1 твердыми телами, жидкостями или газами. Ими могут быть электроны и ионы, составляющие плазму, или электроны и ионы, образующие металл. Свет, рассматриваемый как совокупность фотонов, или ядерная материя, рассматриваемая как совокупность нуклонов, тоже являются макроскопическими объектами и подлежат изучению методами статистической физики.  [c.9]

Особенностью эволюции природных систем является наличие взаимосвязанных превращений структур разных иерархий, протекающих в различных временных шкалах. Поэтому введены представления о иерархической термодинамической системе как системе, состоящей из иерархических подсистем (взаимосвязанных в порядке структурного или какого-либо другого подчинения и перехода от низшего уровня к высшему), выделенных либо в пространстве, либо по времени установления в этих подсистемах равновесия при релаксации. Простейший пример иерархической пространственно выделенной термодинамической системы - двухфазная система пар - жидкость. Здесь каждая фаза системы - ее подсистема. Простейший пример системы, в которой подсистемы выделяются по временам релаксации, - плазма, включающая подсистемы электронов и ионов. Равновесие в каждой подсистеме последней системы устанавливается сравнигельно быстро, тогда как в системе в целом медленно, поскольку обмен энергией между подсистемами затруднен. В подобных ситуациях говорят о частично равновесных состояниях (равновесие в одной структурной гюдсистеме) и вводят различные температуры подсистем. Указанные примеры тривиальны, и термин иерархия в таких простых случаях не упо фебляется. Однако в более сложных иерархических термодинамических системах, например, биологических, содержащих много подсистем различных типов, удобно говорить о структурной и релаксационной иерархии. Так,  [c.23]

Пузырьковая камера. Принцип действия пузырьковой камеры состоит в следующем. В камере находится жидкость при температуре, близкой к температуре кипения. Быстрые заряженные частицы через тонкое окошко в С генке камеры прони1 ают в ее рабочий объем и производят на с юем пути ионизацию и возбуждение атомов жидкости. В тот момент, когда частицы пронизывают рабочий объем камеры, давление внутри нее резко понижают и жидкость переходит в перегретое состояние. Ионы, воаникаю-и ие вдоль пути следования частицы, обладают избытком кинетической энергии. Эта энергия цриБ .диг к повышению температуры жидкости в микроскопическом объеме вблизи каждого 1К1на, ее вскипанию и образованию пузырьков пара. Цепочка пузырьков пара, возникающих вдоль пути движения быстрой зл ряженной частицы через жидкость, образует след этой частицы.  [c.328]

К числу трековых приборов следует отнести камеру Вильсона(, диффузионную камеру, пузырьковую камеру и фотоэмульсионные пластинки. Их действие основано на способности ионов служить центрами конденсации пересыщенного пара или быть центрами, на которых происходит образование пара в перегретой жидкости. При движении заряженной частицы в такой среде на ее пути  [c.45]

Р1так, в металле внеисние валентные электроны атомов коллективизированы и образуют газ или жидкость, заполняющую меж-ионное пространство. Положительно заряженные ионы стягиваются отрицательно заряженным электронным газом в кристалл. Из сказанного следует, что связь в решетке металла возникает вследствие взаимодействия положительных ионов с электронным газом.  [c.82]

Связующие на основе коллоидного диоксида кремния. Продукты гидролиза S1O2 - водные растворы коллоидного кремнезема очень стабильны. Эти связующие получают химическим взаимодействием кислоты и силиката натрия, а главным образом - ионным обменом. Готовое связующее - прозрачная жидкость с молочным оттенком, содержащая 30 - 40% коллоидного кремнезема. Суспензию готовят обычным способом в присутствии ПАВ. Каждый сюй покрытия сушат в течение 1 ч. Формы з и1ивают без опорных материалов. Это связующее перспективно для широкой номенклатуры сплавов в области общего машиностроения.  [c.224]

Своеобразие оптического поведения кристаллов определяется их анизотропией. Существует два рода кристаллов — твердые и жидкие. Различие между ними сводится к тому, что в твердых кристаллах частицы (атомы, ионы, молекулы) во всех трех измерениях расположены упорядоченно. Твердый кристалл обладает кристаллической рещеткой. У жидких кристаллов такой решетки нет. В жидкокристаллическом состоянии обнаруживаются структурные свойства, промежуточные между свойствами твердых кристаллов и жидкостей. В таком состоянии могут находиться некоторые вещества в определенном, характерном для каждого из них температурном рнтервале. При более низких температурах вещество представляет собой твердый кристалл, а при более высоких оно переходит в обычную аморфную жидкость.  [c.30]

Люминесценция может возникать у веществ, находящихся в газообразном, жидком и твердом состояниях. Так, люминесцируют разреженные пары и газы. Люминесцетной способностью обладают чистые жидкости, растворы ряда неорганических солей и органических соединений, а также многие молекулярные кристаллы. Кроме того, обширный класс люминесцирующих веществ составляют сложные неорганические кристаллические вещества кристал-лофосфдры. Они образуются при совместной прокалке основного вещества (например, сернистых соединений металлов второй группы ZnS dS и др.), небольших количеств активатора (ионы тяжелых металлов Ag, u, Mn и др.), а также плавней (легкоплавкие соли Na l, K l и др).  [c.169]

По принципу действия средства измерения давления и разрежения подразделяют на следующие группы жидкостные приборы давления, у которых измеряемое давление уравновешивается давлением столба жидкости грузопоршневые приборы, у которых измеряемое давление уравновешивается массой груза и поршня деформационные приборы, действие которых основано на использовании зависимости упругой деформации и усилия, создаваемого чувствительным элементом, от давления электрические приборы давления, действие которых основано на свойствах отдельных веществ изменять свои электрические параметры под действием давления электроразрядные приборы давления, у которых используется зависимость ионного тока от давления теплоэлектрические  [c.152]

Жидкости легко загрязняются и трудно очищаются. Поэтому на практике применяют технически чистые жидкие диэлектрики, содержащие примеси как попадающие извне, так и образующиеся в результате процесса старения. Такие материалы характеризуются ионной и молионной электропроводностью. Ионная обусловлена диссоциацией молекул самой жидкости (собственная электропроводность) и примесей (примесная электропроводность). Для неполярных жидкостей характерна примесная электропроводность. Полярные же отличаются повышенной удельной проводимостью из-за наличия обоих видов ионной электропроводности, причем возрастание 8г приводит к росту проводимости, так что сильно полярные жидкости с г, более 20 (вода, спирты, кетоны  [c.548]


Металлы характеризуются существованием частично заполненных энергетических зон, обеспечивающих высокую электропроводность этих веществ. При образовании кристаллов металлов электроны частично заполненных зон объединяются в газ (более точно — жидкость, но изучение вопросов, связанных с поведением электронной жидкости выходит за рамки этого курса) электронов проводимости. Результирующее поле, обусловленное ионами и электронами, в окрестности ионов металлов имеет, как правило сферически-симметричный характер. В связи с этим атомы металлов в первом приближении могут рассматриваться как сферы имеющие характерный радиус, а структуры кристаллов металлов — как системы, состоящие из равновеликих шаров. По этим же причинам металлическая связь не насыщена — к любой пape тройке,... атомов всегда может быть добавлен еще один. В результате металлы характеризуются, как правило, структурами с высокими координационными числами (КЧ). Около 2/3 элементов — металлов имеет структуру с КЧ 12 (ГЦК и ГПУ), околО 20% — структуры с КЧ 8 (ОЦК), остальные с несколько меньшими КЧ. Появление для ряда металлов структур с КЧ, меньшими максимально возможных, указывает на отличие потенциальных полей ионов в соответствующих случаях от сферически-симмет-ричных. Это явление обычно объясняют подмешиванием к металлической связи направленной ковалентной связи.  [c.98]

Ранее мы выяснили, что конденсация атомов (или ионов и электронов) приводит к понижению энергии системы и является вследствие этого энергетически выгодным процессом. Поэтому в невозбужденном состоянии при предельно низких температурах все тела находятся в конденсированном состоянии, причем, за исключением гелия,—это твердые кристаллические тела. Гелий при нормальном давлении — жидкость, но при давлении в 30 кбар он также становится кристаллом. Существуют различные подходы к объяснению самого факта существования в твердом теле периодического расположения атомов (трансляционной симметрии). Так, согласно теореме Шенфлиса, всякая дискретная группа движений с конечной фундаментальной областью (т. е. элементарной ячейкой) имеет трехмерную подгруппу параллельных переносов, т. е. решетку [22]. Можно объяснять необходимость существования кристаллической решетки, а в конечном счете и вообще симметричного расположения атомов, исходя из третьего закона термодинамики. Согласно этому закону, при приближении к абсолютному нулю температуры энтропия системы должна стремиться к нулю. Но энтропия системы пропорциональна логарифму числа возможных комбинаций взаимного расположения составных частей системы. Очевидно, любое не строго правильное расположение атомов влечет за собой большое число равновозможных конфигураций атомов и приводит к относительно большой энтропии, и только строго закономерное расположение атомов может быть единственным. Поэтому равная нулю энтропия совместима только со строго повторяющимся взаимным расположением составных частей тела [1]. Иногда симметричность расположения атомов в кристалле объясняют исходя из однородности среды.  [c.124]

Электрохимическое обессоливание основано на разделении и удалении ионов солей под действием постоянного электрического тока. Устройство представляет собой ванну, в которую погружены два электрода (катод и анод), а между ними ионитовые диафрагмы толщиной 1 мм (рис. 19.21). Эти диафрагмы обладают избирательной ионопроницаемостью, очень большим диффузионным сопротивлением высокой электропроводностью. Избирательная ионопроницаемость заключается в том, что диафрагма из катионита не пропускает анионы, но пропускает катионы, а анионитовые диафрагмы, наоборот, проницаемые для анионов и практически непроницаемы для катионов. Ионитовые диафрагмы изготовляют из ионитовых смол различных марок. Под действием тока, проходящего последовательно через все камеры, катионы растворенных солей (например, Na+) переносятся к катоду, а анионы (например, С1 )—к аноду. Вследствие этого в одних камерах, образуемых диафрагмами (например, в четных), получается обессоленная жидкость, а в других (нечетных) — сильно концентрированная жидкость (рассол). В качестве материала для катода рекомендуется нержавеющая сталь, а для анода — магнетит (плавленая закись— оксид железа). Диафрагмы обессоливающей ванны зажаты между крышками с торцовых сторон ванны, стянутыми болтами, и изолированы друг от друга резиновыми или кинлингеритовы-ми прокладками в виде рамы.  [c.272]

У ядра-капли есть еще одна своеобразная степень свободы, а именно колебания всей массы нейтронов относительно всей массы протонов. При введении этой степени свободы фактически делается допущение о том, что ядро как бы состоит из двух жидкостей — протонной и нейтронной, растворенных друг в друге. При возбуждении этой степени свободы ядро приобретает дипольный электрический момент, т. е. поляризуется. Поляризационные возбуждения связаны с глубоким изменением структуры ядра. Поэтому им соответствуют довольно высокие энергии — примерно 15—20 МэВ в тяжелых ядрах и 20—25 МэБ в легких. Колебания такого типа были использованы А. Б. Мигдалом (1945) для объяснения механизма поглощения v-излучения ядрами. Поляризационные колебания ядра аналогичны оптической ветви колебаний в ионном кристалле.  [c.87]


Смотреть страницы где упоминается термин Жидкости ионные : [c.121]    [c.34]    [c.14]    [c.263]    [c.350]    [c.358]    [c.330]    [c.328]    [c.350]    [c.592]    [c.215]    [c.726]    [c.376]   
Защита от коррозии старения и биоповреждений машин оборудования и сооружений Т2 (1987) -- [ c.359 ]



ПОИСК



Иониты

Ионов

По ионная



© 2025 Mash-xxl.info Реклама на сайте