Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электропроводность примесная

Рис. 7.9. Зависимость электропроводности примесных полупроводников от Рис. 7.9. <a href="/info/118219">Зависимость электропроводности</a> примесных полупроводников от

Рис. 2. Зависимость электропроводности примесного полупроводника от теми-ры. Рис. 2. Зависимость <a href="/info/741251">электропроводности примесного полупроводника</a> от теми-ры.
Возникновение электронной или дырочной электропроводности при введении в идеальный кристалл различных примесей обусловлено следующим. Рассмотрим кристалл 81, в котором один из атомов замещен атомом 8Ь. На внешней электронной оболочке 8Ь располагает пятью электронами (V группа периодической системы). При этом четыре электрона образуют парные электронные связи с четырьмя ближайшими атомами 81. Свободный пятый электрон продолжает двигаться вокруг атома 8Ь по орбите, подобной орбите электрона в атоме На однако сила его электрического притяжения к ядру уменьшится соответственно величине диэлектрической проницаемости 81. Поэтому для освобождения пятого электрона требуется незначительная энергия (приблизительно 0,008 адж). Такой слабо связанный электрон легко отрывается от атома 8Ь под действием тепловых колебаний решетки при низких температурах. Низкая энергия ионизации примесного атома означает, что при температурах около—100° С все атомы примесей в Се и 81 уже ионизированы, а освободившиеся электроны участвуют в процессе электропроводности. При этом основными носителями заряда являются электроны и возникает электронная (отрицательная) электропроводность, или электропроводность п -типа.  [c.388]

Точечные дефекты в ионных кристаллах оказывают большое влияние на электропроводность. Электропроводность щелочно-галоидных кристаллов обусловлена движением заряженных точечных дефектов — вакансий, междоузельных собственных или примесных ионов. Поэтому ее называют ионной проводимостью. Изучение ионной проводимости позволяет получать информацию о концентрации и состоянии точечных дефектов.  [c.94]

Опыт показывает, что с увеличением концентрации доноров (или акцепторов) наклон прямых 1па от 1/Т в области примесной проводимости уменьшается. Согласно (7.168) это значит, что уменьшается энергия ионизации примеси. При некоторой критической концентрации она обраш,ается в нуль. Для элементов пятой группы в германии эта критическая концентрация составляет ЗХ Х10 см , в кремнии 8-10 см . Полупроводник, в котором энергия ионизации примеси обратилась в нуль, называют часто полуметаллом. В нем концентрация электронов и электропроводность нечувствительны к температуре (кроме области температур, где начинается собственная проводимость).  [c.254]


Из формулы (3.42) следует, что с ростом уровень Ферми перемещается вверх (по шкале энергии) примерно с середины запрещенной зоны до расстояния порядка коТ ниже дна зоны проводим ости (при Ий Нс). Если N >N0, то система электронов в зоне проводимости становится вырожденной и поведение примесного полупроводника напоминает уже поведение металла (например, уменьшение электропроводности с ростом температуры).  [c.117]

В случае примесных полупроводников п- и р-типа выражение для удельной электропроводности обычно записывают в такой форме  [c.128]

Температурная зависимость электропроводности. Электросопротивление металлов при комнатных температурах обусловлено в основном столкновениями электронов проводимости с колебаниями решетки (фононами), а при низких температурах (4 К) — столкновениями с примесными атомами и механическими дефектами решетки. Решеточный вклад в  [c.131]

Вследствие теплового движения электроны могут переходить в более высокое энергетическое состояние. В полупроводнике п-типа электроны из примесных уровней, находящихся под зоной проводимости, переходят в зону проводимости, обусловливая тем самым электропроводность полупроводника. В этом случае носителями электрического заряда являются электроны.  [c.602]

В главе 5 была получена формула (5.23), согласно которой электропроводность металлов определяется концентрацией электронов проводимости п, их эффективной массой т и временем релаксации т. Первые две величины определяются видом энергетического спектра и способностью атомов отдавать часть своих электронов в газ электронов проводимости и не могут заметно измениться при появлении дефектов (кроме примесных атомов). В то же время величина должна существенно меняться при появлении дефектов, поскольку она равна отношению скорости фермиевских электронов к длине свободного пробега, которая з  [c.245]

Рассмотрим примесные полупроводники. Содержащиеся в них примесные ато.мы могут оказывать сушественное влияние на электропроводность полупроводника. На рис. 3.5, а, в, д схематически представлены процессы образования свободных носителей заряда, способных участвовать в электропроводности, в собственном и примесном кремнии, эти же процессы показаны и на энергетических диаграммах (рис. 3.5, б, г, е). Для кремния характерны примеси замещения, V. е. атомы примеси заменяют атомы кремния в узлах кристаллической решетки.  [c.50]

При введении в кремний атома элемента V группы Периодической системы элементов Д. И. Менделеева (например, мышьяка As) четыре из пяти его валентных электронов вступают в связь с четырьмя валентными электронами соседних атомов кремния и образуют устойчивую оболочку из восьми электронов. Девятый электрон оказывается слабо связанным с ядром пятивалентного элемента, он легко отрывается и превращается в свободный электрон (рис. 3.5, в), дырки при этом не образуется. На энергетической диаграмме этот процесс соответствует переходу электрона с уровня доноров (f jj в свободную зону (рис. 3.5, г). Примесный атом превращается в неподвижный ион с единичным положительным зарядом. Примесь этого типа называется донорной, а полупроводники, в которые введены атомы доноров, - электронными или п-типа электропроводности. В таких полупроводниках свободных электронов больше, чем дырок, и они обладают преимущественно электронной электропроводностью.  [c.51]

Если в кремний введен атом трехвалентного элемента Ш группы Периодической системы элементов Д. И. Менделеева (например, бора В), то все три его валентных электрона вступают в связь с четырьмя электронами соседних ато-.мов кремния. Для образования устойчивой оболочки из восьми электронов не хватает одного. Им является один из валентных электронов, отбираемый от ближайшего соседнего атома, у которого в результате образуется незаполненная связь - дырка (рис. 3.5, д). На энергетической диаграмме этот процесс соответствует переходу электрона из валентной зоны на уровень акцепторов Wa и образованию в валентной зоне дырки (рис. 3.5, е). Примесный атом превращается в неподвижный ион с единичным отрицательным зарядом, свободного электрона при этом не образуется. Примесь такого типа называется акцепторной, а полупроводники, в которые введены атомы акцепторов, - дырочными или р-типа электропроводности. Дырок в них больше, чем свободных электронов. Поэтому эти полупроводники обладают преимущественно дырочной электропроводностью.  [c.51]


С повыщением температуры собственная концентрация п, возрастает, достигает примесную концентрацию Пщ,=Ид и превышает ее, что соответствует переходу к собственной электропроводности, который наступает при некоторой температуре Г/, называемой температурой ионизации. Графически Т/ можно найти, построив касательную к кривой зависимости Уг(Т) и найдя точку ее пересечения с уровнем 1 (рис. 3.10).  [c.57]

На рис. 3.11 приведена температурная зависимость концентрации электронов в зоне проводимости для полупроводника п-типа. На кривой имеются три характерных участка аб - для примесной электропроводности, бв - для области истощения примеси и вг - для собственной электропроводности.  [c.58]

Примесная электропроводность полупроводников  [c.63]

При низких температурах объемная проводимость твердых диэлектриков может целиком определяться примесями и дефектами структуры. При повышенных температурах. ток утечки может определяться переносом ионов основного вещества диэлектрика. Для облегчения понимания особенностей ионной электропроводности твердых диэлектриков рассмотрим явления, наблюдающиеся при прохождении постоянного тока через кристалл каменной соли, который взят как самый простой и наглядный пример. Ионный характер электропроводности в данном случае предопределяется соотношениями энергий активации ионов и электронов потенциал активации ионов натрия равен 0,85 В, ионов хлора 2,55 В, а электронов 6 Б (при комнатных температурах). Заметная электронная электропроводность в каменной соли может быть обусловлена наличием некоторых примесей и действием ионизирующих излучений, приводящих к отрыву электронов от ионов. В обычных условиях при комнатной температуре подвижность наиболее слабо закрепленных в решетке ионов натрия еще настолько мала, что срыва их электрическим полем из узлов решетки при нормальной ее структуре не происходит. Наблюдающаяся при этом очень малая проводимость носит примесный характер.  [c.50]

Электропроводность жидких диэлектриков. В неполярных жидких диэлектриках диссоциация молекул на ионы незначительна, поэтому число носителей заряда в единице объема невелико и проводимость мала. Источником ионов в неполярной жидкости могут быть примеси — влага, различные полярные жидкости, частицы твердых веществ, молекулы которых диссоциируют на ионы. В таких случаях проводимость жидкости называют примесной. Молекулы полярных жидкостей диссоциируют на ионы в большей степени, поэтому их проводимость большая. Если в полярной жидкости содержится даже небольшое количество полярной примеси, то ее молекулы практически все диссоциируют, возрастает и количество диссоциировавших молекул жидкости и проводимость сильно увеличивается.  [c.140]

Электропроводность твердых диэлектриков. В используемых в технике твердых диэлектриках — бумагах, картонах, лаках, эмалях. компаундах, пленках, полимерах, керамиках и стеклах, слюдах и многих других — характерной является ионная электропро- водность. При нагреве или освещении, действии радиации, света, сильного электрического поля сначала ионизируются содержащиеся в таких диэлектриках дефекты и примеси. Образовавшиеся таким образом ионы определяют низкотемпературную примесную область электропроводности твердого диэлектрика. Как и в жидком диэлектрике, ионы занимают места временного закрепления и относительно слабо связаны с окружающими частицами. В результате тепловых колебаний они преодолевают потенциаль ный барьер W, который составляет обычно 0,5—1,0 эВ, и скачком перемещаются в другое положение. В электрическом поле такие перемещения ионов становятся направленными и они перемещаются по полю.  [c.143]

Зависимость удельной проводимости твердого диэлектрика с ионной электропроводностью от температуры такая же, как и для жидкого диэлектрика. Потому (5.7) справедлива и для твердых диэлектриков. Если в твердом диэлектрике наблюдается примесная и собственная ионная электропроводность, то зависимость проводимости от температуры выражается формулой  [c.143]

На участке / уменьшение р . вызывается увеличением концентрации носителей заряда за счет ионизации ловушек. Этот участок называется областью примесной электропроводности. На участке 2, где все ловушки ионизированы, увеличение сопротивления обусловливается торможением носителей заряда при их взаимодействии с совершающими тепловые колебания частицами, из которых построен диэлектрик. Наконец, на участке 3 энергия, которую получает диэлектрик при нагреве, достаточна для ионизации собственных частиц. Поэтому концентрация носителей заряда снова начинает расти, теперь уже с большей скоростью, и сопротивление снова начинает уменьшаться.  [c.145]

Для примесного полупроводника формула для электропроводности в общем виде будет иметь следующий вид  [c.272]

Полупроводники G ионными решетками ( dS, PbS, оксиды). Экспериментальные данные о ионных полупроводниках показывают, что в оксидах и сульфидах большей частью наблюдается следующая закономерность. Если полупроводник может обладать электропроводностью п- и >-типов, как, например, PbS, то избыток серы по отношению к его стехиометрическому составу или примесь кислорода вызывает у него дырочную электропроводность, и избыток металла — электронную. В полупроводниках с одним типом примесной электропроводности увеличение числа дырок в полупроводнике р-типа получается за счет избытка кислорода или серы, а увеличение числа электронов в полупроводнике и-типа — за счет уменьшения числа этих элементов. Из опыта известно, что выдержка Си О (дырочный полупроводник) в печи с кислородной средой ведет к увеличению проводимости, а ZnO (электронный полупроводник) — к уменьшению ее.  [c.236]

Используя данные конкретных материалов, взятые из кривых, вычисляют энергию активации W примесной электропроводности полупроводника при различной концентрации примеси. В области собственной электропроводности по подобному выражению может быть определена ширина запрещенной зоны данного полупроводникового материала.  [c.243]


Физические свойства германия приведены в табл. 8-3. Удельная проводимость германия с различной концентрацией мышьяка зависит от температуры. Из рис. 8-17 видны области температур, в которых проявляются собственная и примесная составляющие электропроводности германия. Кроме того, видно, что при большом содержании примесей (кривая 6) имеем вырожденный полупроводник.  [c.254]

На языке зонной теории этот процесс можно представить следующим образом. Между заполненной валентной зоной и свободной зоной проводимости располагаются энергетические уровни пятого электрона мышьяка (рис. 5.8, в). Эти уровни размещаются непосредственно у дна зоны проводимости, на расстоянии д л 0,01 эВ от нее. При сообщении электронам таких примесных уровней энергии они переходят в зону проводимости. Образующиеся при этом неподвижные положительно заряженные ионы мышьяка в электропроводности не участвуют.  [c.157]

Электропроводность металлических сплавов. Предположим, что в идеальной решетке металла, например меди, имеюш,ей строго периодический потенциал (рис. 7.7, а), часть атомов меди беспорядочно замеш,ена атомами другого элемента, например золота. Так как поле вблизи примесных атомов иное, чем вблизи основных атомов, то потенциал решетки не сохранится строго периодическим (рис. 7.7, б). Он нарушается беспорядочно распределенными примесями. Такое нарушение приводит, естественно, к рассеянию носителей и дополнительному электрическому сопротивлению. Так как в сплавах примеси вызывают более сильное нарушение периодичности потенциала решетки, чем тепловые колебания, то абсолютное значение роил значительно выше р чистых компонентов и определяется в основном рассеянием носителей тока на примесях.  [c.188]

Примесная проводимость полупроводников. Температурная зависимость электропроводности невырожденных примесных полупроводников, как и собственных, определяется в основном температурой зависимостью концентрации носителей. Поэтому качественный характер кривой зависимости а (Т) аналогичен кривой зависимости п (Т), показанной на рис. 6.4, в.  [c.191]

Рис. 7.23. Зависимость удельной электропроводности невырожденного примесного полупроводника от температуры ( Vdi Рис. 7.23. Зависимость <a href="/info/88274">удельной электропроводности</a> невырожденного <a href="/info/22608">примесного полупроводника</a> от температуры ( Vdi<A d2<iVd3)
Зависимость электропроводности аморфного кремния от дозы облучения приведена на рис. 11.13. Видно, что пока доза облучения не превышает некоторого порогового значения, резкого увеличения электропроводности не наблюдается. При этом практически все электроны с донорных примес- ных уровней переходят на локализованные состояния вблизи р-Лишь после того как все эти состояния будут заполнены, начинает доминировать примесная проводимость, связанная с забросами электронов из донорной зоны в зону проводимости. Аналогичная ситуация имеет ме сто в аморфном гер-мании. в  [c.367]

Акцепторные уровни расположены выше потолка валентной зоны, и при наличии энергии активации АЕд электроны л-гз валентной зоны могут переходить на указанные уровни, -оставляя в зоне незанятые энергетические уровни — дырки. Этот переход сопровождается превращением акцепторов в отрицательно заряженные ионы, которые также не участвуют н электропроводности. Такой полупроводник называют примесным полупроводником р-типа (для него характерна дырочная проводимость). Таким образом, в противоположйость собственной проводимости примесная проводимость осуществляется носителями заряда только одного знака — электронами, которые поставляются донорами в свободную зону, нли дырками путем захвата электронов из валентной зоны акцепторами.  [c.92]

Жидкости легко загрязняются и трудно очищаются. Поэтому на практике применяют технически чистые жидкие диэлектрики, содержащие примеси как попадающие извне, так и образующиеся в результате процесса старения. Такие материалы характеризуются ионной и молионной электропроводностью. Ионная обусловлена диссоциацией молекул самой жидкости (собственная электропроводность) и примесей (примесная электропроводность). Для неполярных жидкостей характерна примесная электропроводность. Полярные же отличаются повышенной удельной проводимостью из-за наличия обоих видов ионной электропроводности, причем возрастание 8г приводит к росту проводимости, так что сильно полярные жидкости с г, более 20 (вода, спирты, кетоны  [c.548]

В первом случае атомы легирующей примеси имеют большее число валентных электронов, чем атомы полупроводника. Такую примесь называют донорной. Вследствие введения донорной примеси после образования химических связей примесного атома с окружающими его атомами полупроводника один валентный электрон оказывается лишним , т. е. не участвует в химических связях. Поэтому достаточно лишь небольшой энергии Ео (рис. 3, б), чтобы оторвать от примесного атома и сделать свободным этот валентный электрон, т. е. перевести его в зону проводимости. При этом образуется неском-пенсированный положительный заряд, который отличается от положительно заряженной дырки, способной перемещаться по кристаллу, тем, что остается неподвижным в кристаллической решетке. Легирование полупроводника донорной примесью увеличивает концентрацию электронов в зоне проводимости при неизменной концентрации дырок в валентной зоне. При этом электропроводность осуществляется в основном электронами, находящимися в зоне проводимости. Такие полупроводники называют электронными, или полупроводниками п-типа электропроводности.  [c.8]

Электропроводность кристаллов Si при нормальной температуре примесная. Тип электропроводности и окраска кристаллов карбида кремния зависят от инородных примесей или определяются избытком атомов Si или С над стехиометрическим составом. Чистый карбид кремния стехиометрического состава бесцветен. Примеси элементов V группы (N, Р, As, Sb, Bi) и железа в карбиде дают зеленую окраску и электропроводность п-типа, элементы П (Са, Mg) и III групп (В, А , Ga, In) — голубую и фиолетовую окраску и электропроводность р-типа. Избыток Si приводит к электронной электропроводнос ти Si , а избыток С — к ддлрочной.  [c.290]

Доноры. Заполненные при отсутствии внешних энергетических воздействий (теплота, свет) примесные уровни расположены р запрещенной зоне около дна зоны проводимости (рис. 8-1, б). При этом энергия активации примесных атомов меньше, чем ширина запрещенной зоны основного полупроводника, а потому при нагреве тела переброс электронов примеси будет опережать возбуждение злектронов решетки. Положительные заряды, возникшие у отдален-ь ых друг от друга примесных атомов (на рис. 8-1,6 уровни примеси г оказаны с разрывами), остаются локализованными, т. е. не могут блуждать по кристаллу и участвовать в электропроводности. Полу-лроводник с такой примесью имеет концентрацию электронов, большую, чем концентрация дырок, появившихся за счет перехода электронов из валентной зоны в зону проводимости, и его называют полупроводником п-типа, а примеси, поставляющие электроны в зону проводимости, — донорами.  [c.233]


Примеси внедрения. Структуры типа алмаза. Тип электропроводности определяется размерами и электроотрицательностью примесных атомов, внедряющихся в междоузлия решеток полупроводников IV группы периодической системы. Эксперимент показывает, что, в противоречие с указанным выше правилом валентности, литий (I группа), внедряясь в междоузлия решетки германия, будет донором, а кислород (VI группа) — акцептором. Внедрение большого по размерам атома лития в тесные междоузлия решетки германия оказывается возможным только после его ионизации вследствие слабой связи валентного электрона, легко о грыва-ющегося от своего атома в среде с большой диэлектрической проницаемостью (б германия-16). Образовавшийся ион лития меньших размеров может уже внедряться в тесные междоузлия решетки, а освободившийся электрон обусловливает электропроводность п-типа. Внедрение в междоузлия решетки полупроводника атомов кислорода, имеющих сравнительно небольшие размеры и большую электроотрицательность, приводит к захватам электронов из атомов полупроводника, вследствие чего возникает электропроводность р-типа. Если атом Ge или Si под влиянием энергетического воздействия перебрасывается в междоузлие, то образуются два примесных уровня донорный внедренного атома и акцепторный пустого узла.  [c.236]

Температурная аасисимость удельной проводимости полупроводника есть результат изменения концентрации и подвижности носителей заряда (рис. 8-6). В области низких температур полупроводник характеризуется примесной электропроводностью, а в области высоких температур — собственной электропроводностью. В области примесной электропроводности приведены три кривые для различных значений концентрации примесей, вплоть до вырождения полупроводника, когда зависимость его удельной проводимости в некотором интервале температур стано-аится подобной зависимости удельной проводимости металлов.  [c.243]

Электропроводность твердых кристаллических тел изменяется при деформации вследствие увеличения или уменьшения (растяжение, сжатие) межатомных расстояний, приводящих к изменению концентрации и подвижности носителей. Концентрация носителей заряда может стать меньше или больше вследствие изменения ширины зиергетических зон кристалла и смещения примесных уровней, что в свою очередь изменяет энергию активации носителей и изменяет их эффективные массы, входящие в выражения концентрации Г10сителеи заряда. Подвижность носителей заряда меняется из-за уменьшения (увеличения) амплитуды колебания атомов при их сближении (удалении). Для металлов основным является изменение подвижности, а для полупроводников изменение концентрации носителей заряда, определяемое энергией активации. Ширина запрещенной зоны может как увеличиваться, так и уменьшаться при сближении атомов, и у разных полупроводников одна и та же деформация может вызывать как увеличение, так и уменьшение удельной проводимости.  [c.244]

Экситоны. Как уже указывалось, при возбуждении собственной фотопроводимости электроны из валентной зоны перебрасываются в зону проводимости и становятся свободными. Однако возможно и иное течение процесса, когда возбужденный электрон не разрывает связи с дыркой, возникающей в валентной зоне, а образует с ней единую связанную систему. Такая система была впервые рассмотрена Я. И. Френкелем и названа им экситоном. Экситон сходен с атомом водорода в обоих случаях около единичного положительного заряда движется электрон и энергетический спектр является дискретным (рис. 12.9). Уровни энергии экситоиа располагаются у дна зоны проводимости. Так как экситоны являются электрически нейтральными системами, то возникновение их в полупроводнике не приводит к появлению дополнительных носителей заряда, вследствие чего поглощение света не сопровождается увеличением проводимости полупроводника. При столкновении же с фоноиами, примесными атомами и другими дефектами решетки экситоны или рекомби-иируют, или разрываются . В первом случае возбужденные атомы переходят в нормальное состояние, а энергия возбуждения передается решетке или излучается в виде квантов света во втором случае образуется пара носителей — электрон и дырка, которые обусловливают повышение электропроводности полупроводника,  [c.327]


Смотреть страницы где упоминается термин Электропроводность примесная : [c.254]    [c.389]    [c.214]    [c.656]    [c.284]    [c.284]    [c.143]    [c.38]    [c.38]    [c.234]    [c.258]    [c.263]   
Материалы в радиоэлектронике (1961) -- [ c.62 , c.285 ]



ПОИСК



Примесная электропроводность полупроводников

Собственная и примесная электропроводности полупроводников

Электропроводность

Электропроводность удельна примесная

Электропроводность электронно-примесной системы



© 2025 Mash-xxl.info Реклама на сайте