Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сварные дефектоскопия

Ультразвуковой контроль основан на способности ультразвуковых волн отражаться от поверхности раздела двух сред. С помощью пьезометрического щупа 12 ультразвукового дефектоскопа 13, помещаемого на поверхность сварного или паяного соединения, в металл 11 посылают ультразвуковые колебания (рис. 5,56, в). Ультразвук вводят в изделие отдельными импульсами под углом к поверхности металла. При встрече с поверхностью дефекта возникает отраженная ультразвуковая волна. В перерывах между импульсами щуп служит приемником отраженного от дефекта ультразвука. Дефект в соединении в виде пика 14 фиксируется на экране осциллографа.  [c.245]


Объем дефектоскопии при изготовлении резервуара включал контроль качества в объеме 100% длины сварных швов оболочки резервуара методом ультразвуковой дефектоскопии и 15% длины сварных швов в местах пересечении меридиональных и горизонтальных (поясных) швов радиографическим методом. Механические испытания и металлографические исследования сварных соединений выполнялись а объеме требований ОСТ 26-291.  [c.14]

Объем контроля ультразвуковой дефектоскопией или радиографическим методов стыковых, угловых, тавровых и других сварных соединений сосудов и их элементов (днищ,  [c.49]

Указанный объем контроля относится к каждому сварному соединению. Места сопряжений (пересечений) сварных соединений подлежат обязательному контролю ультразвуковой дефектоскопией или радиографическим методом.  [c.50]

При невозможности осуществления ультразвуковой дефектоскопии или радиографического контроля из-за недоступности отдельных сварных соединений или при неэффективности этих методов контроля (в частности, швов приварки штуцеров и труб внутренним диаметром менее 100 мм) контроль качества этих сварных соединений должен производиться другими методами в соответствии с инструкцией, согласованной с Госгортехнадзором России. Указания об использованном методе контроля заносятся в паспорт сосуда.  [c.50]

При диагностировании технического состояния сварных сосудов и аппаратов ультразвуковой метод применяется при толщинометрии и дефектоскопии. Применяются приборы трех типов  [c.197]

Ультразвуковая дефектоскопия (УЗД) наряду с радиографической является регламентируемым методом контроля качества сварных сосудов и аппаратов в соответствии с требованиями действующих НТД.  [c.203]

Ультразвуковая дефектоскопия аппаратов должна проводиться в соответствии с требованиями ГОСТ 14782 и ОСТ 26-2044. УЗД предназначена для контроля продукции на наличие дефектов (обнаружение дефектов) типа нарушений сплошности и однородности материалов и их сварных соединений для измерения глубины и координат их залегания.  [c.203]

Правильность показаний дефектоскопа проверяют на эталонах сварных швов с заранее определенными дефектами.  [c.205]

Очевидно, трудно ожидать других результатов, когда вся методология диагностирования почти полностью нацелена на поиск дефектов. Не отрицая важности результатов дефектоскопии, следует все же признать, что такой подход явно недостаточен для таких крупногабаритных конструкций, каковыми являются сварные сосуды и особенно колонные аппараты, реакторы и т.п.  [c.209]


При изготовлении сварных сосудов и аппаратов в соответствии с требованиями ОСТ 26-291 цветная дефектоскопия является регламентируемым методом контроля качества сварных соединений. Цветной или магнитопорошковой дефектоскопии следует подвергать сварные швы, не доступные для осуществления контроля радиографическим или ультразвуковым методом (в частности, швов приварки штуцеров и труб внутренним диаметром менее 100 мм), а также сварные швы сталей, склонных к образованию трещин при сварке.  [c.219]

Цветная дефектоскопия сварных соединений должна проводиться в соответствии с ГОСТ 18422 и ОСТ 26-5.  [c.219]

Ультразвуковой дефектоскопии (УЗД) или просвечиванию необходимо подвергать до 100% от общей длины сварных швов обследуемого сосуда, причем обязательному контролю следует подвергать все продольные швы обечаек корпуса, места пересечения продольных и кольцевых швов, стыки днищ с обечайкой корпуса, а также сварные швы приварки штуцеров диаметром > 100 мм. Зачистка мест контроля под УЗД от окалины ржавчины до металлического блеска производится вдоль стыков шириной по 140-150 мм по обе стороны шва.  [c.249]

Цветной дефектоскопии (ЦЦ) следует подвергать те участки сварных соединений, где имеется вероятность образования поверхностных трещин при изготовлении и эксплуатации. К таким местам относятся узлы вварки наиболее нагруженных при эксплуатации штуцеров диаметром > 100 мм, перекрещивающиеся швы, места исправления швов. Контролю Ц Д подлежат ремонтные сварные швы и зона вокруг них шириной не менее 30 мм.  [c.249]

Пневматические испытания проводятся с соблюдением особых мер предосторожности только при положительных результатах тщательного внешнего и внутреннего осмотров, диагностики технического состояния аппарата неразрушающими методами контроля (ультразвуковой и цветной дефектоскопии сварных соединений, толщинометрии и замеров твердости), а также прочностных расчетов основных несущих элементов с учетом их фактических толщин.  [c.250]

НВ < 235). При визуальном осмотре в верхней части кольцевого шва обнаружена трещина длиной 300 мм, а методами ультразвуковой дефектоскопии зафиксировано ее развитие в металле шва на расстояние 1200 мм. Характер разрушения хрупкий, поверхность излома покрыта продуктами коррозии, растрескивание начинается от непровара (рис. 13). В зоне термического влияния под корневым слоем в области очага разрушения обнаружен участок укрупненного бейнитного зерна с твердостью 266-285 НУ. В следующих далее слоях сварного соединения в зоне термического влияния наблюдается мелкозернистая нормализованная структура с твердостью 210-221 НУ. Сероводородное растрескивание сварного соединения инициировал концентратор напряжений — непровар в сочетании с бейнитной структурой металла, обладающей высокой твердостью.  [c.42]

Такие дефекты, как изменение толщины стенки трубы, потеря металла, отложение, вмятина, вздутие, закат, включение, расслоение, выявленные внутритрубной дефектоскопией, одно-.значно идентифицируются в том случае, когда каждый из них имеет явно выраженные признаки своего типа, и отсутствует наложение посторонних сигналов. На практике дефекты, как правило, имеют сложную форму. Часто наблюдаются схожие признаки (включение или расслоение, водородное расслоение или вмятина, вздутие или отложение и другие). В области сварных швов происходят потери сигнала, которые значительно снижают информативность измерений.  [c.98]

Цветная, магнитопорошковая или вихретоковая дефектоскопия сварных швов и основного металла мест вварки штуцеров и патрубков, приварки горловин люков, зон сопряжений обечайки с днишами, мест приварки опорных узлов, зон проведенного ранее ремонта (внутри и снаружи сосуда или трубопровода) производится в соответствии с [98-101, ПО].  [c.162]

Неразрушающий контроль сварных соединений и ПОУ методами ультразвуковой дефектоскопии осуществляют в соответствии с [102, 103, 113-115].  [c.162]

Гамма-дефектоскоп Газпром (см, табл. 10) предназначен для просвечивания сварных стыков трубопровода через две стенки.  [c.297]

Гамма-дефектоскопы ДАР-2 и ДАР-3 предназначены для радиографического контроля качества сварных соединений труб с трубными досками теплообменных агрегатов, используемых на тепловых и атомных электростанциях. Аппараты обеспечивают просвечивание сварного соединения панорамным пучком излучения за одну экспозицию. Чувствительность контроля стальных и титановых сварных соединений составляет 0,15—0,2 мм в диапазоне толщин труб и их диаметров, приведенных в табл. 13.  [c.297]


Сталь. Методы ультразвукового контроля. Общие требования Контроль неразрушающий. Швы сварные. Методы ультразвуковые Аппараты рентгеновские аналитические. Общие технические условия Источники излучения с изотопом цезий-137 для гамма-дефектоскопов. Типы, основные параметры и размеры  [c.473]

С помощью пьезометрического щупа ультразвукового дефектоскопа, помещаемого на поверхность сварного соединения, в металл посылают направленные ультразвуковые колебания (рис. 80). Ультразвук вводят в изделие отдельными импульсами под углом к поверхности металла. При встрече с дефектом возникает отраженная ультразвуковая волна, которая воспринимается либо другим щупом (приемным в случае двухщуповой схемы), либо тем же (подающим при однощуповой схеме) во время паузы между импульсами. Отраженный ультразвуковой сигнал преобразуется в электрический, усиливается и подается на трубку осциллографа, где фиксируется наличие дефекта в соединении в виде пика на экране осциллографа.  [c.151]

В горизонтальных сосудах допускается местное перекрытие седловыми опорами кольцевых (поперечных) сварных швов на общей длине не более 0,35 t D, а при наличии гилд-кладного листа - не более 0,5 яО, где D - наружный диаметр сосуда. При этом перекрываемые участки сварных швов ни всей длине должны быть проверены методом радиографии или ультразвуковой дефектоскопии.  [c.44]

Ультразвуковая дефектоскопия и радиографический кон-i роль производятся с целью выявления в сварных соединениях вну фенних дефектов (трещин, непроваров, пор, шлаковых включений и др.).  [c.49]

В настоящее время для обнаружения и идентификации дефектов используется широкий спектр методов неразрушающего контроля (НК). Современная классификация методов НК включает девять видов контроля электрический, магнитный, вихретоковый, радиоволновой, тепловой, визу-ально-измерительный, радиационный, акустический и проникающими веществами. По причинам конструктивного и эксплуатационного характера при диагностировании сварных аппаратов используются, в основном, следующие методы НК магнитный контроль (ГОСТ 24450), капиллярный контроль (ГОСТ 24522), акустический контроль (ультразвуковая дефектоскопия ГОСТ 14782 и толщинометрия, метод акустической эмиссии), радиационные методы (ГОСТ 7512 рентгеновский, гамма- и бета-излучением). При этом следует отметить, что радиационные методы применяются преимущественно на стадии изготовления аппаратов, а использование магнитного метода носит эпизодический харак гер. Руководящие документы по оценке 1екущего состояния  [c.175]

Вначале рассмотрим нормирование дефектов в сварных соединениях, не склонных к квазихрупким (хрупким) разрушениям. При разработке данной методики норми1ювания необходимо учитывать влияние местоположения дефектов на прочность сварных соединений, а также реальные возможности производства и уровень развития дефектоскопии. Удобным является так называемое жесткое нормиро-  [c.108]

Визуальный контроль основных материалов, сварных соединений и изделий проводится невооруженным глазом и с применением оптических приборов (луп, микроскопов, визуально-оптических приборов — цистоскопов, эндоскопов, бароскопов, флексоскопов, биноклей, перископических дефектоскопов, зеркал, зрительных труб и др.).  [c.140]

В настоящее время наиболее распространенным из отечественных УЗ-дефектоскопов является дефектоскоп марки УД2-12, а толщиномеров — УТ-93П. В ЦНИИТМАШе разработан УЗ-дефектоскоп УДЦ -105 М, который обеспечивает автоматизированное измерение эхо-сигнала и его отображение на цифровом табло. В дефектоскопе марки УДЦ-100 также имеются 1налогичные возможноеги, а на цифровом табло отображаются координаты залегания дефектов. Высокой степенью автоматизации обладает дефектоскоп УЗД-18, предназначенный для контроля сварных соединений с толщиной до 60 мм. Дефектоскоп УЗД-22М (МГТУ им. Баумана) обладает гювышенной чувствительностью и имеет возмож-тюсть выдавать распечатку координат и формы дефектов.  [c.179]

В отличие от методов просвечивания, ультразв>тсовые методы позволяют успешно выявлять именно трещиноподобные дефекты. Спецификой ультразвукового метода контроля является то, что он не дает конкретной информации о характере дефекта, так как на экране дефектоскопа появляется импульс, величина которого пропорциональна отражающей способности обнаруженного дефекта. Последняя зависит от многих факторов размеров дефекта, его геометрии и ориентации по отношению к направлению распространения ультразвуковых колебаний. В связи с тем, что эти параметры при контроле остаются неизвестными, обнар> -женные дефекты обычно характеризуются эквивалентной площадью, которая устанавливается в зависимости от интенсивности полученного сигнала Достоинствами л льтразвукового метода являются его меньшая по сравнению с методами просвечивания трудоемкость, а также возможность достаточно точного определения координат обнаруженного дефекта. Как показала практика применения ультразвукового метода, он не позволяет достаточно надежно обнаружить дефекты, лежащие вблизи поверхности изделия в связи с экранированием сигнала от дефекта сигналом ог поверхности. Это обстоятельство также необходимо ч читы-вать при практическом использовании данного метода контроля. Ультразвуковые методы используют как для контроля дефектов металла листов и поковок на стадии их изготовления, так и для контроля сварных соединений, для диагностики трубопроводного транспорта. На данном принципе созданы внутритрубные инспекционные снаряды (ВИС) — Ультраскан-СД, которые, двигаясь внутри трубы, считывают информацию о техническом состоянии трубопроводов. При этом фиксируется толщина стенки, коррозионные каверны, расслоения мета.лла, дефекты стресс-коррозионного происхождения.  [c.61]

Метод цветной дефектоскопии применяют для обнаружения трещин, невидимых невооруженным глазом. Трещины выявляются после нанесения на предварительно зачищенную поверхность проникающего, смывающего и проявляющего растворов в соответствии с Методическими указаниями по цветнс й дефектоскопии деталей и сварных швов .  [c.99]


Гамма-дефектоскопы Магистраль и Магистраль 1 (см. табл. 10) предназначены для просвечивания сварных стыков магистральных газонефтепро-водов через две стенки и изнутри трубы как на трубосварочной базе, так н в нитке трубопровода. Они снабжены упаковочными транспортными комплектами типа В. Аппарат подобного типа (рис. 30) укомплектован двухка-нально радиометрической системой наведения, состоящей из датчиков 5 и радиоэлектронных блоков 6, и реперным контейнером 7 и предназначен для использования совместно с автоматизированным самоходным устройством 2. Выпуск и перекрытие пучка излучения из радиационной головки 4 производится с помощью электромеханического привода 3. Реперный контейнер 7 устанавливается на трубе / около кассеты с пленкой 8.  [c.297]

Контроль неразрушающйй. Дефектоскопы ультразвуковые. Методы измерения основных параметров 23694—79 Контроль неразрушающий. Паста магнитная для магнитно-порошковой дефектоскопии КМ-К. Технические условия 23702—79 Контроль неразрушающий. Преобразователи ультразвуковые. Основные параметры и методы их измерений 23764—79 Гамма-дефектоскопы. Общие технические условия 23829—79 Контроль неразрушающйй акустический. Термины и определения 23858—79 Соединения сварные стыковые и тавровые арматуры железобетонных конструкций. Ультразвуковые методы контроля качества. Правила приемки  [c.474]

Клюев В. В., Малкес Л. Я. и др. Материалы для капиллярной и магиитио-люминесцентной дефектоскопии. — Сб. Передовой опыт неразрушающего контроля качества сварных соединений. Киев Изд. ИЭС им. Патона АН УССР, 1979, с. 113-126.  [c.477]

Воспроизводящее устройство УВ-ЗОГ (более совершенное по сравнению с дефектоскопом МДУ-2У) предназначено для считывания и воспроизведсния на экране электронно-лучевой трубки полей рассеяния от дефектов, зафиксированных на магнитной ленте в процессе магнитографического контроля стыковых сварных соединений трубопроводов, резервуаров и других конструкций. Оно используется также в полевых испытательных лабораториях, передвижных автолабораториях в условиях строительства магистральных трубопроводов и в заводских лабораториях.  [c.44]

Принцип действия дефектоскопа основан на построчном считывании с магнитной ленты полей, зафиксированных в процессе контроля сварных соединений и преобразований информации в электрические сигналы многоэлементным микроферрозондо-вым преобразователем, с последующей обработкой и частотной селекцией сигналов и регистрацией результатов на электрохимической бумаге. Запись сигналов ведется по четырем каналам — по одному каналу записывается плоскостное полутоновое изображение рельефа магнитного поля, записи по остальным каналам дают возможность судить по амплитуде сигнала от дефектов и их местоположении по толщине изделия. Получение в дефектоскопе двухмерного плоскостного изображения достигается за счет возвратно-поступательного движения по электрохимической бумаге подвижного электрода и пропускания через пишущие электроды (подвижный и неподвижный) электрического тока, пропорционального величине сигнала, поступающего с феррозондов. Подвижный электрод движется синхронно с движением феррозондов над магнитной лентой. Степень потемнения бумаги оказывается тем большей, чем больший по амплитуде сигнал снимается с феррозондов.  [c.46]

Автоматизированные феррозондовые дефектоскопы для контроля труб выпускает ин-т д-ра Ферстера в ФРГ. Дефектоскоп типа Дискомат-6251 предназначен для комбинированного контроля (методом вихревых токов и методом считывания полей дефектов) качества продольного сварного шва ферромагнитных труб с помощью вращающегося измерительного преобразователя в форме диска. Диаметр контролируемых изделий 57—600 мм, скорость контроля при сплошном сканировании— до 1,0 м/с. В дефектоскопе предусмотрены раздельная индикация внешних и внутренних дефектов, а также регулирование границ сортировки. К дефектоскопу можно подключать устройства для маркировки дефектных труб и оценки размеров дефектов, а также блок управления сортирующим устройством, производящим автоматическую разбраковку труб на две или три группы,  [c.57]

Ферромагнитные сварные трубы диаметром до 60 мм контролируют дефектоскопом ЭЗТМ. Проходной трансформаторный ВТП, выполненный в виде трех одновитковых катушек из полых проводников, внутри которых циркули-  [c.140]

При контроле сварных швов толщиной 200 мм и более чувствительность дефектоскопа иногда оказывается не достаточной. Применяют преобразо ватели с малыми углами наклона пониженными частотами, пьезопла СТИНЫ большого размера (см. табл. 19) контроль только прямым лучом.  [c.260]

Стол дефектоскопии представляет собой сварную раму, на верхней плоскости которой смонтированы поворотные плиты с преобразователями дефектоскопов. Поворотные плиты используют при настройке дефектоскопов, для чего преобразователи поворачивают на такой угол, при котором пруток можно перемен1,ать вручную. На раме стола дефектоскопа смонтирован пульт управления линии. Все пять ведущих роликов приводятся в движение от общего привода, установленного на подающем роликовом конвейере.  [c.327]


Смотреть страницы где упоминается термин Сварные дефектоскопия : [c.523]    [c.389]    [c.45]    [c.229]    [c.245]    [c.196]    [c.383]    [c.473]    [c.140]    [c.144]    [c.273]   
Конструкционные материалы Энциклопедия (1965) -- [ c.252 ]



ПОИСК



А4икроомметр для измерения омического сопротивления вторичных контуров сварочных маМагнитографический дефектоскоп для контроля сварных швов тип ВУМД

Б о с ь к о. Выбор параметров и схем ультразвуковой дефектоскопии швов из легких сплавов судовых сварных конструкций

Влияние размеров и формы усиления сварного шва на чувствительность. магнитографической дефектоскопии

Дефектоскопия

Дефектоскопия акустическая сварных соединений

Дефектоскопия сварных соединений

Дефектоскопы

Ивахненко. Опыт применения дефектоскопа со сцинтилляционньгм счетчикам для контроля качества сварных соединений

Контроль сварных соединений, не контролируемых ультразвуковой и радиографической дефектоскопией

Контроль сварных соединений, недоступных для гамма-, рентгене- или ультразвуковой дефектоскопии

Магнитная дефектоскопия сварных швов и соединений

Ободов А.М. Ультразвуковая дефектоскопия нагретых сварных соединений

Сварные Дефектоскопия магнитная

Трубы, дефекты металлов сварные, дефектоскопия —

Ультразвуковая дефектоскопия сварных швов и соединений

Ультразвуковая дефектоскопия угловых сварных швов

Ультразвуковой дефектоскоп для контроля качества сварной точки тип УЗД



© 2025 Mash-xxl.info Реклама на сайте