Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Травление оценка

Для ориентировочной оценки текстуры крупнозернистого материала может быть успешно использован металлографический анализ по фигурам травления.  [c.272]

Трещины отчетливо видны на поверхности шлифа после глубокого травления благодаря капиллярному эффекту. С помощью этого метода могут быть также обнаружены мелкие закалочные трещины. При оценке результатов необходимо учитывать наличие напряжений в образце, которые могут вызвать появление трещины в процессе травления.  [c.41]


Оценка результатов глубокого травления  [c.42]

Для оценки результатов глубокого травления необходимо знать, как влияют отдельные травители на внешний вид выявляемой структуры. Различимые глазом дефекты такие, как грубые трещины, усадочные раковины, газовые пузыри, закаты и неметаллические включения, если они встречаются в большом количестве, не требуют дополнительной оценки. Если в результате глубокого травления получается гладкая однородная поверхность, это указывает на бездефектную структуру причиной пористости могут быть усадочные раковины, реже — химическая неоднородность (ликвация элементов в твердом растворе, легко растворимые неметаллические включения). При этом действие травителя необходимо учитывать, так как травимость включений в одном и том же образце разными реактивами различна. Сегрегации также травятся различными травителями по-разному и могут быть причиной кажущейся пористости. Поэтому часто исследуют одинаковые образцы в отожженном и закаленном состояниях, при этом картина кажущейся пористости, обусловленная включениями, несмотря на термообработку, остается одинаковой.  [c.42]

Травление шлифа проводят непосредственно после полировки. При травлении образуется газ, а на поверхности шлифа — пленка, которая затрудняет оценку структуры. Многократное использование раствора, например после 24-ч выдержки, невозможно, так как 148  [c.148]

Бесконтактный метод измерения элект рической проводимости позволил провести оценку состояния твердого раствора в деформируемом слитке или прутке сплава А1—Си (Си —3,2%) в зависимости от параметров прессования (исследовалось влияние подпрессовки, температура и степень деформации). Проведено большое число замеров электрической проводимости в исходных слитках, в пресс-остатках и прутках в различных состояниях после прессования, закалки и старения. Электрическая проводимость измерялась в осевой плоскости разрезанного пресс-остатка и прутка. Перед замером пресс-остаток или пруток, разрезанный вдоль оси на две части, фрезеровался, зачищался наждачной шкуркой и подвергался глубокому травлению. Принятая методика устраняла возможность нагартовки поверхностного слоя.  [c.54]

Оценку коррозионного поражения после экспонирования испытуемого образца можно проводить путем визуального обследования, изменения глубины коррозии или изменения прочности. Обычно, однако, оценку проводят путем определения потерь массы после того, как коррозионные продукты удалены путем травления в специальном растворе, который выбирают соответственно данному металлу. Операцию травления повторяют несколько раз и каждый раз определяют потерю массы. По результатам строят диаграмму (рис. 122), на которой получают две линии АВ и ВС ВС представляет потерю массы, обусловленную растворением металла после того, как удалены продукты коррозии. Действительная масса продуктов коррозии приблизительно соответствует точке D,  [c.141]


Однако изучение тонких поверхностных слоев по стандартной рентгеновской методике является малоэффективным. Толщина слоя металла, обычно участвующего в отражении и формирующего картину структурных изменений, находится в пределах 10" — 10" см. Поэтому структурные изменения в тонких приповерхностных слоях анализируются с помощью электронографического метода. Используя дифракцию электронов, можно исследовать слои порядка 10" —IQ- см и меньше. Для анализа более толстых слоев металла в этом случае прибегают к химическому или электролитическому травлению. Наилучшим способом снятия слоев является электролитическое полирование, при котором не происходит, как при химическом травлении, возможного вытравливания структурных составляющих и снимается равномерный слой металла по всей поверхности. Однако сам процесс снятия слоя приводит к перераспределению имеющихся в металле напряжений, а также к возникновению значительных микронапряжений. Следует особо подчеркнуть, что при неравномерном распределении структурных изменений по глубине исследуемого объекта, что всегда имеет место при трении, любая дополнительная обработка поверхности приводит к неоднозначным результатам исследования и становится вовсе недопустимой при оценке структурных изменений, вызванных влиянием ПАВ различного рода смазок.  [c.17]

Оценка макроструктуры стали производится на травленых образцах и на изломах по ГОСТ 10243—75.  [c.12]

На травленых образцах, вырезанных по полному сечению прутка до 140 мм (нри больших размерах допускается перековка или вырезка), производится оценка по пятибалльным шкалам (чем больше дефектность, тем выше балл) путем сравнения с нормативными макроструктурами, приведенными в стандарте по шести показателям.  [c.12]

Выявить микроструктуру паяного соединения можно химическим или электролитическим травлением с использованием фазового контраста, а также методом теплового травления. Существенным недостатком многих металлографических методов исследования является отсутствие количественной оценки результатов, что в некоторой степени восполняется расчетными методами и сочетанием микроанализа с другими методами (физическим, химическим и др.).  [c.311]

При травлении стали с окалиной, когда ингибиторы не должны замедлять скорость растворения окалины и замедлять скорость растворения стали, оценку эффективности ингибиторов предложено [2] осуществлять по показателю рт, где р —скорость растворения металла т —время удаления окалины. Чем меньше этот показатель, тем лучше ингибитор. Существуют и другие критерии оценки эффективности ингибиторов при удалении окалины [3, с. 184 4].  [c.10]

Глубокое травление. Представляет собой метод макротравления применяется преимущественно для выявления дефектов стали (закаты, трещины, раковины). Травитель разбавленная серная или соляная кислоты. Продолжительность травления — до 24 ч. Оценка результатов затруднительна.  [c.172]

Для более быстрой оценки микроструктуры при металлографических исследованиях и контроле различных сталей используют эталонные шкалы микроструктур, приведенные в соответствующих стандартах или технических условиях с указанием реактивов для травления и увеличений. Эти шкалы позволяют оценить микроструктуру образца в баллах в зависимости от содержания определенных структурных составляющих их размеров, степени дисперсности, неравномерности распределения и других признаков. По эталонным шкалам определяют, например, количество феррита, перлита и других фаз стали, дисперсность мартенсита и перлитных структур, собственно структуру перлита, степень развития карбидной неоднородности, количество нитридов и т. д. Перечень стандартных шкал используемых для оценки микроструктуры различных сталей, приведен ниже  [c.34]

Контроль макроструктуры — основной вид испытаний для определения качества стали и обнаружения разнообразных металлургических дефектов. Макроструктуру контролируют на поперечных или продольных шлифах и изломах. Наиболее часто макроструктура контролируется на поперечных травленых макрошлифах. Этот способ позволяет оценить все сечение прутков стали и благодаря травлению выявить крупные и мелкие дефекты (включая ликвационные) и особенности структуры. Оценка макроструктуры производится по ГОСТ 10243—75. Макроструктуру прутков и заготовок размером до 140 мм проверяют в полном сечении, а более 140 мм — на перекованных пробах.  [c.325]


Метод М2 (метод Садовского) применяется для оценки глубины обезуглероженного слоя в быстрорежущих сталях по структуре под микроскопом (на поперечных травленых шлифах образцов, прошедших специальную термическую обработку).  [c.339]

Приготовленные микрошлифы промывают и подвергают исследованию в нетравленом виде для оценки загрязненности неметаллическими включениями, обнаружения микроскопических пор, трещин и т. п. После изучения шлифа в нетравленом виде производится его травление для выявления микроструктуры. Для котельных материалов обычно применяется травление, представляющее собой избирательное растворение границ зерен и фаз вследствие их различных физико-химических свойств. В результате травления образуется рельеф, и при наблюдении под микроскопом сильно растворившиеся участки из-за тени или пониженной отражательной способности представляются более темными, а нерастворившиеся — более светлыми. Травящее действие реактива зависит от концентрации трави-теля и его химической активности, длительности травления и температуры реактива. Для химического травления шлифы погружают полированной поверхностью в раствор травителя либо на поверхность наносится травитель в виде капли. Продолжительность травления устанавливается экспериментально (см. табл. 2.18).  [c.56]

Рассматривая ползучесть как некоторый вид квазивязкого течения металла, мы должны допустить, что в каждый момент скорость ползучести при данном структурном состоянии определяется однозначно действующим напряжением и температурой. Структурное состояние — это термин, чуждый по существу механике, поэтому применение его в данном контексте должно быть пояснено более детально. Понятие о структурном состоянии связано с теми или иньгаи физическими методами фиксации этого состояния — металлографическими наблюдениями, рентгеноструктурным анализом, измерением электрической проводимости и т. д. Обычно физические методы дают лишь качественную характеристику структуры, выражающуюся, например, в словесном описании картины, наблюдаемой на микрофотографии шлифа. Иногда эта характеристика может быть выражена числом, но это число бывает затруднительно ввести в механические определяющие уравнения. В современной физической литературе, относящейся к описанию процессов пластической деформации и особенно ползучести, в качестве структурного параметра, характеризующего, например, степень упрочнения материала, принимается плотность дислокаций. Понятие плотности дислокаций нуждается в некотором пояснении. Линейная дислокация характеризуется совокупностью двух векторов — направленного вдоль оси дислокации и вектора Бюргерса. Можно заменить приближенно распределение большого числа близко расположенных дискретных дислокаций их непрерывным распределением и определить, таким образом, плотность дислокаций, которая представляет собою тензор. Экспериментальных методов для измерения тензора плотности дислокаций не существует. Однако некоторую относительную оценку можно получить, например, путем подсчета так называемых ямок травления. Когда линия дислокации выходит на поверхность, в окрестности точек выхода имеется концентрация напряжений. При травлении реактивами поверхности кристалла окрестность точки выхода дислокаций растравливается более интенсивно, около этой точки образуется ямка. Таким образом, определяется некоторая скалярная мера плотности дислокаций, которая вводится в определяюпще уравнения как структурный параметр. Условность такого приема очевидна.  [c.619]

Метод ямок травления используют для оценки плотности ДИ слокаций (по числу ямок травления, приходящихся на единицу площади шлифа) и особенностей распределения дислокаций. Дефекты недислокационного происхождения могут дать свои ямки травле ния и исказить представление об истинной дислокационной струк-  [c.101]

Подобным испытаниям подвергаются хрупкие материалы и изделия из них. Стойкость к термоударам зависит от температурного коэффициента линейного расширения материала поэтому для приблизительной оценки этой характеристики можно пользоваться соотношением Alai, в котором А — коэффициент, определяемый механической прочностью и теплопроводностью материала — температурный коэффициент линейного расширения. При неоднородности материала, а также дефектах роверхности (царапины и т. п.) стойкость к термоударам сильно снижается, что легко объяснимо теорией прочности хрупкого тела. Некоторые материалы, например стекло, подвергаются травлению плавиковой кислотой для повышения стойкости к термоударам так же действует закалка.  [c.175]

Ускоренным методом оценки склонности материала к межкристаллитной коррозии служит анодное травление с использованием гальваностатических и нотенциостатнческих установок. При гальваностатических испытаниях электрод  [c.90]

Чений, в то время Как они выявляются травлением смесью Соляной и азотной КИСЛОТ. Наблюдение чувствительных к термообработке структурных составляющих, например карбидов, позволяет различать отожженные и закаленные образцы. Гилл и Джонстин [2 ] проводили эксперименты с различными растворами кислот. Эти авторы применяли соляную кислоту 1 1, азотную кислоту 1 3, серную кислоту 1 1 и концентрированную соляную кислоту. Травление отожженных и закаленных образцов стали с 1% С соляной кислотой дает неинтерпретируемую картину. Хороших результатов достигают при травлении азотной кислотой. Лучшим травителем оказалась серная кислота. Для устойчивой оценки результатов травления требуется разработка определенного метода с постоянными условиями подготовки образцов и травления. Результаты глубокого травления обусловлены свойствами материала. Влияние различных факторов, согласно Кешиану [3], сопоставлено ниже.  [c.43]


Карни [105], который также применял травление раствором 117, установил количественное соотношение между потерей массы и глубиной проникновения по обоим методам (Хау и Штрайхера). Такая оценка должна обеспечить более высокую надежность. Но значение показателя Карни имеет бльшое рассеяние, которое получается из-за погрешности в определении глубины проникновения.  [c.146]

Реактив Лакомбе 36 выявляет периодическое отражение. В процессе травления на отдельных зернах образуется чешуйчатая поверхность (рельефное травление), которая позволяет четко установить определенные кристаллографические направления. После рельефного травления раствором 36 возможна и качественная оценка ориентации кристаллов.  [c.261]

В зависимости от задачи исследования тем-плет просматривается в нетравленом виде или после специального травления. Наряду с исследованием темплетов при макроанализе изучается характеристика излома металла характер, цвет и блеск. Оценка излома производится при помощи специально составленных шкал.  [c.149]

Особое Еримание должно быть обращено на сбор и сортировку ценных отходов, получаемых при обработке заготовок из цветных металлов, на регенерацию тех вспомогательных материалов, которые могут быть повторно использованы в производстве (например, сбор и регенерирование отработанных масел), на получение из использованных растворов достаточно ценных материалов (например, железного колчедана из использованных растворов при травлении стали). Приходовать с денежной оценкой момсно только такие отходы, полезное применение которых не вызывает сомнений. Если же используется только часть отходов, то стоимость использованной их части следует исключить из затрат на основное производство в том месяце, когда эта часть отходов фактически использована.  [c.274]

Бара баны котлов, установленных в 30-40-е годы, в том числе импортные, часто изготавливались из кипящей стали, что по существующей НТД не допускается. Поэтому при наработках около 2,5-10 ч можно рекомендовал исследование микроструктуры и определение шх нтеских свойств основного металла и металла нескольких высаженных заклепок. Оценка прочности возможна как при испытании образцов из вырезок на разрыв, тдк и при пересчете твердости на временное сопротивление и предел текучести. Первый метод более предпочтителен, так как позволяет определить не только прочностные, но и пластические характеристики металла. При ухудшении (яойств по сртшнению с исходными, установленными в НТД, необходимо выполнить поверочные расчеты на прочность основного металла обечаек, днищ и заклепочных соединений. Дефекты на поверхности стенок и днищ выявляются с помощью травления, МИД или пенитратов.  [c.165]

Эффективность очистки оценивалась визуально и по количеству отложений на образцах труб, определенному методом катодного травления. Образцы вырезались из тех же поверхностей, что и при оценке исходной загрязненности котла. В нутренняя поверхность образцов оказалась покрытой равномерным налетом черного цвета. Окалина и продукты коррозии были удалены полностью. Остаточная загрязненность поверхностей нагрева после пассивации гидразин-гидратом с аммиаком составила 20— 26 г/м2.  [c.70]

После 8 мес обработки питательной воды трилоиом Б котел был остановлен для осмотра и вырезки образцов труб. Осмотр барабана котла показал, что шлам и коррозионные повреждения в нем отсутствуют, стенки барабана покрыты равномерной тонкой пленкой серо-черного цвета. Образцы экранных труб, вырезанные из области наивысших тепловых нагрузок, были покрыты равномерной пленкой черного цвета, хорошо сцепленной с металлом. Количественная оценка железоокисного слоя по данным, определенным катодньи травлением, составила Bsero 10 г/м .  [c.103]

Важное значение имеет явление естественного старения на-водороженного титана. В закаленном (400° С) титане ударная вязкость при различном содержании водорода находится на более высоком уровне, чем после медленного охлаждения. Однако длительная выдержка при комнатной температуре приводит к закономерному снижению ударной вязкости закаленного титана до уровня медленно охлажденного. Отсюда следует, что при изготовлении полуфабрикатов малой толщины (тонкие листы, трубы и т. п.), охлаждающихся после горячей прокатки, термообработки или травления в горячем-щелочном расплаве с большой скоростью, наводороживание может быть не обнаружено при оценке качества  [c.118]

Сопоставляя усталостную прочность сплавов Ti—5А1—2,5Sn (типа ВТ5-1) и Ti—6А1—4V (типа ВТ6) в листах толщиной 4 мм и кованых прутках диаметром 12—18 мм авторы работы [119] приходят к выводу, что листовой материал, обладающий более измельченной структурой, имеет выше предел усталости, хотя и показывает большой разброс данных. Этот разброс можно объяснить травлением листов, что резко действует на усталостную прочность. Понижение усталостной прочности при огрублении макроструктуры было получено и для сплава АТЗ. В работе [73] сопоставлялись две характерные структуры теплопрочных сплавов ВТЗ-1 и ВТ18 мелкозернистая и пластинчатая. В условиях пульсирующего циклического растяжения при 20° С оказалась лучшей мелкозернистая структура при 450° С и асимметричном циклическом растяжении обе структуры стали равноценными при 600° С и асимметричном циклическом растяжении у сплава ВТ18 оказалась лучшей уже пластинчатая структура. Эти опыты показали на необходимость оценки влияния структуры конкретных условий испытания.  [c.147]

Обычно при разработке ингибиторов или при их иприменении в кислых средах (травление, перевозка кислот, защита хи.мической аппаратуры и т. п.) учитывают лишь потерю массы. металла вследствие развития процессов общей равномерной коррозии. Однако практика показывает, что такая оценка явно недостаточна, так как в большинстве случаев оборудование, механизмы, аппараты работают не только в. условиях воздействия агрессивных кислых сред, но и под влиянием различного рода механических напряжений. Механические напряжения Могут усиливать равномерную коррозию металла в кислой среде, а также приводить к локальным коррозионным поражениям, скорость которых в десятки Тысячи раз выше скорости равномерной коррозии. Совместное действие среды Механического фактора вызывает коррозионно-механическое разрушение, которое выражается в усилении общей коррозии, возникновении коррозионного растрескивания 11 коррозионной усталости.  [c.61]

Подобные примеры можно было бы продоллсить. Однако следует отметить один из важнейших моментов, связанных с применением ингибиторов, а именно лри использовании того или иного ингибитора следует обращать внимание на -весь комплекс проблем, связанных с защитой металла от коррозии. Ингибиторы должны не только защищать от коррозии, но и сохранять практически важные чгвойства металла, не влиять на дальнейшие технологические операции, которым молсет подвергаться изделие. Так, напри.мер, при технологических операциях подготовки изделий из высокопрочных углеродистых сталей под гальванические по-4фытия (травление) ингибитор должен не только способствовать получению хорошей поверхности, но и эффективно препятствовать локальным процессам, приводящим к катастрофическим разрушениям (растрескиванию). При травлении пружинных изделий необходимо, чтобы ингибитор предотвращал водородное охрупчивание. Таким образом, лишь на основе комплексной оценки можно делать вы- вод о целесообразности применения того или иного ингибитора для конкретных коррозионных сред.  [c.96]


Для определения способности смазки удаляться с поверхности металла при обезжиривании, травлении, термической обработке и других операциях проводят, например, отжиг в промышленных колпаковых печах пластинок холоднокатаной автолистовой стали, смоченных исследуемой смазкой (эмульсией) и сложенных в пачки, плотно сжатые струбцинами, с последующей визуальной оценкой поверхности.  [c.162]

Как показали прямые эксперименты, выполненные методом вакуумного травления, плотность дислокаций в аустените для исходной закаленной структуры после завершения фазового превращения может достигать весьма большой величины — до 10 см (см. рис. 46, 53). По оценкам, сделанным в работе [ 140], минимальная плотность дислокаций, которая может привести к измельчению зерна, соответствует величине 1-4 10 см . Это значение получается из условия, по которому повышение свободной энергии металла вследствие измельчеимя зерна не должно превосходить избыто шой энергии дислокаций.  [c.113]

На износостойкость сплавов при трении в присутствии минералов основное влияние оказывают количество и вид твердых кристаллических выделений. Установлено, что шлифы высокоуглеродистых хроможелезных сплавов и сплавов, из разделов 7.2.9 7.2.10 и 7.2.11, целесообразно после полирования алмазными пастами рассматривать при косом освещении без травления. При обычном полировании окисью алюминия твердые составляющие часто замазываются и поэтому плохо различимы. Травление дает неясную, трудно поддающуюся оценке структуру.  [c.124]

В лабораторные исследования могут входить также и различные технологические операции последующей обработки отливок. Например, травление отливки, термическая и механичеекая обработка, нанесение покрытий. После выполнения этих операций производится оценка дефектов.  [c.190]

При недогреве в структуре доэвтектоидных сталей наблюдается остаточный феррит либо мартенсит неравномерного строения. При перегреве возникает игольчатый мартенсит, размеры игл которого тем больше, чем значительнее был перегрев в процессе аустенитизации. Наиболее объективным методом оценки ог.тималькости режима нагрева является травление мартенситной структуры для выявления бывшего зерна аустенита.  [c.258]

Известно, что устойчивость к разрушению Пк под действием искусственных источников излучения зависит от спектральных ха-рактертстик пленкообразующего, пигментов и излучения, что затру-двяет проведение сравнительного анализа и количественной оценки степени разрушения Пк разных цветов, избирательно поглощающих различные длины волн излучения. Поэтому прсщесс разрушения Пк изучали в высокочастотной кислородной плазме о удалением продуктов травления и регулированием глубиш протравливания.  [c.145]


Смотреть страницы где упоминается термин Травление оценка : [c.154]    [c.159]    [c.45]    [c.155]    [c.429]    [c.117]    [c.146]    [c.471]    [c.172]    [c.541]    [c.186]    [c.228]   
Ингибиторы коррозии (1977) -- [ c.228 ]



ПОИСК



Оценка при травлении — Влияние концентрации и природы кислоты 1.46 Зависимость пластичности стали время травления

Травление

Травленне



© 2025 Mash-xxl.info Реклама на сайте