Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Керра явление —

Эффект Керра — явление более простое и теоретически лучше изучено, чем искусственная анизотропия при механических деформациях. Это и понятно. В последнем случае проявляется воздействие сложных молекулярных полей на молекулы тела, подвергшегося деформации. Оно плохо изучено и значительно сложнее соответствующего сравнительно простого воздействия постоянного однородного электрического поля. Кроме того, явление Керра удалось наблюдать.в газах, для которых теория развита наиболее глубоко и подробно. Изучение явления Керра в газах совместно с рефракцией и деполяризацией рассеянного света позволяет определить тензор поляризуемости молекул.  [c.554]


Явление самофокусировки может привести к сжатию пучка конечного диаметра в тонкую нить. Это явление особенно заметно в жидкостях с большой постоянной Керра.  [c.401]

Такой эффект был объяснен Борном, дополнившим исходную теорию явления, развитую Ланжевеном. В теории Ланжевена предполагалось возникновение и выстраивание наведенных электрическим полем (индуцированных) дипольных моментов, тогда как в дополнении Борна учитывалась также ориентация постоянных дипольных моментов, которыми обладают некоторые жидкости. Знак постоянной Керра обусловлен относительной ролью этих двух физических процессов.  [c.122]

До появления лазеров было очень трудно заметить какие-либо отклонения от линейности материального уравнения Р = а Е, так как внешние поля в веществе, создаваемые светом обычных источников, были пренебрежимо малы по сравнению с внутриатомным полем (0,1 — 10 В/см по сравнению с Еат q /a 10 В/см). Мощные лазерные пучки позволяют создать поле в 10 — 10 В/см, что уже сравнимо с внутриатомным полем и может приводить к изменению указанных выше параметров среды. Не будем проводить анализ конкретных причин таких воздействий (эффект Керра, электрострикция и др.), а оценим необходимые изменения в феноменологическом описании явления. Очевидно, что потенциальная энергия вынужденных колебаний электронов уже не может описываться известной формулой U(x) = l/2kx , соответствующей квазиупругой силе F = —kx. При наличии мощного воздействия света на атомную систему мы должны учесть члены более высокого порядка, приводящие к ангармоничности колебаний-.  [c.168]

Двойное лучепреломление в электрическом поле (явление Керра)  [c.527]

Наряду со знаменитым явлением Фарадея (вращение плоскости поляризации в магнитном поле, 1846 г.), которое было первым исследованным магнитооптическим эффектом, явление Керра сыграло важную роль в обосновании электромагнитной теории света. В более поздние годы (1930 г. и позже) удалось наблюдать двойное лучепреломление под действием электрического поля в парах и газах. Измерения эти гораздо труднее измерений з жидкостях вследствие малости эффекта, зато теория явления приложима к ним с меньшими оговорками.  [c.528]

В. Явление Керра, вызванное электрическим полем мощного импульса света. Выше речь шла о возникновении двойного лучепреломления в изотропной среде под действием постоянного электрического поля. Такое же явление наблюдается и в переменном электрическом и даже в поле световой волны.  [c.531]


Таким образом, теория Ланжевена объясняет явление Керра, но оставляет непонятным существование (хотя и в меньшем количестве) веществ, для которых Пе < Пд, т. е. В <С 0.  [c.533]

Исходя из общих соображений, можно также до известной степени сделать понятным, почему разность — По в явлении Керра пропорциональна квадрату напряженности электрического поля. Действительно, изменение знака поля соответствует изменению на 180° положения кристалла, которому уподобляется вещество в электрическом поле, т. е. переворачиванию кристалла. Но такое переворачивание не меняет оптических свойств кристалла. Следовательно, и оптические свойства вещества не должны зависеть от направления электрического поля, т. е. разность — По должна быть пропорциональна четной степени напряженности поля, и именно второй, ибо члены высшего порядка играют меньшую роль. Теория также приводит к отношению Пе — п)1(По — п) = —2, установленному на опыте.  [c.534]

Время существования явления Керра, или, что то же самое, время релаксации анизотропии, может быть определено из хода убывания интенсивности света зеленого импульса в зависимости от разности времен прихода обоих импульсов.  [c.536]

Таким образом, частичная деполяризация света объясняется анизотропией молекул, т. е. теми же свойствами среды, что и явление двойного лучепреломления в электрическом поле (эффект Керра, см. 152). Открывается возможность установить зависимость между постоянной Керра и величиной деполяризации. Опыт подтвердил эту зависимость.  [c.589]

Значительно более быструю модуляцию добротности резонатора можно осуществлять, используя электрооптические затворы (см. 152). Действие этих затворов основано на практически безынерционном изменении или возникновении оптической анизотропии некоторых жидкостей и кристаллов под действием электрического поля. Относящийся к явлениям этого типа эффект Керра описан в 152. С этой же целью применяется и другое электрооптическое явление, так называемый эффект Поккельса, возникающий в кристаллах и столь же малоинерционный, как и эффект Керра.  [c.790]

Мгновенная мощность излучения в режиме генерации сверхкоротких импульсов примерно в Г/АТ раз больше средней мощности и может достигать значений 10 —10 Вт. Поэтому сверхкороткие импульсы нашли широкое поле применения при исследовании самых разнообразных явлений — многофотонной ионизации атомов и молекул, вынужденного рассеяния, мгновенного нагрева вещества до очень высоких температур и т. п. Рекордно короткая длительность импульса позволила использовать сверхкороткие импульсы для изучения очень быстрых процессов, например, распада возбужденных состояний молекул, происходящего за время 10 —10 с, времени существования эффекта Керра ( 152), инерционности нелинейного фотоэффекта (см. 179) и т. д.  [c.815]

Теоретическое описание нелинейных волновых явлений в этих условиях основывается обычно на совместном решении волновых уравнений и динамических уравнений для нелинейного отклика. Относительно просто последние выглядят для апериодического отклика. Если нелинейная добавка к показателю преломления связана с инерционными эффектами (например, высокочастотным эффектом Керра для анизотропно поляризующихся молекул), то динамическое уравнение для нелинейной добавки А/г имеет вид  [c.74]

Оптич. свойства М. такше определяются величиной поляризуемости, являющейся функцией частоты падающего света — частоты переменного элоктрич. поля световой волны. Так, через поляризуемость выражается молярная рефракция веществ. Анизотропная поляризуемость находит своо выражение в Керра явлении и в деполяризации рассеянного света (см. Рассеяние света). В случае аддитивности свойств М. тензор поляризуемости может быть представлен суммой тензоров поляризуемостей отдельных связей. Это представление, наз. валентно-оптич. схемой, широко используется в молекулярной оптике и в теории комбинац. рассеяния света.  [c.283]


Совокупность онтич. явлений, из к-рых могут быть получены те или иные сведения о свойствах молекул, объединяются обычно под названием молекулярной оптики. К ним относится дисперсия света, рассеяние света, оптич. активность, а также явления, происходящие при расиространении света в веще ст-вах, помещенных в электрич. или магнитное Ц1эле (см. Керра явление, Штарка явление, Зеемана явление, Фарадея явление, Коттон — Муттона аффект). Многие результаты молекулярной О. могут быть полу-чепы еще в рамках классич. представлений, на основе очень общей модели молекулы, в к-рой молекула характеризуется только тензором поляризуемости. и дипольным электрич. (а в нек-рых случаях тал же магнитным) моментом. Однако теоретич. рассмотрение этпх величин требует уточнения модели молекулы и, вообще говоря, рассмотрения ее как квантовой системы.  [c.498]

Двойное лучепреломление в магнитном поле (явление Коттон— Мутона). Как показали опытные данные, под действием магнитного поля, перпергдикулярного направлению распространения света, на веш,естве наблюдается явление, аналогич юе эффекту Керра. Установлено, что в этом случае оптическая анизотропия среды выразится формулой  [c.294]

Анизотропия в электрическом поле. Возникновение анизотропии в электрическом поле было обнаружено Керром в 1875 г. и с тех пор широко используется в технике эксперимента. В настоящее время явление Керра хорошо исследовано как экспериментально, так и теоретически. Это оказалось возможным благодаря тому, что эффект наблюдается в веществах, находящихся в жидком и даже газообразном состоянии, а их изучение несравненно проще изучения твердого тела. Схема опыта относительно проста (рис. 3.10). Между двумя скрещенными поляризаторами Pi и / 2 располагают плоский конденсатор. Между пластинами конденсатора помещают кювету с жидким нитробензолом — веществом, в котором изучаемый эффект весьма велик. При включении напряжения происходит поляризация молекул нитробензола и их выстраивание. Так создается анизотропия вещества с преимущественным направлением (оптической осью кназикрис-талла) вдоль вектора напряженности электрического поля. Так же как и при механической деформации, излучение становится эллиптически поляризованным и частично проходит через второй поляризатор, скрещенный с первым, т.е. установленный так, чтобы не пропускать линейно поляризованный свет. Опыт дает Ап = н,, — п = КЕ , где К — некая константа, как правило, положительная. Однако для некоторых веществ К оказывается меньше О (это значит, что /г > п , т.е. образуется отрицательный квазикристалл).  [c.122]

Вместе с тем явление Керра нашло за последние годы ряд чрезвычайно важных научных и научно-технических применений, осгю-ванных на способности его протекать практически безынерционно, т. е. следовать за очень быстрыми переменами внешнего поля. Таким образом, и по теоретической, и по практической ценности явление двойного лучепреломления в электрическом поле принадлежит к числу крайне интересных и важных. Как уже упоминалось (см. 2), о желательности постановки подобных опытов писал еще Ломоносов (1756 г.) о неудаче попытки обнаружить, влияет ли электризация на преломляющую способность жидкости, сообщает Юнг (1800 г.) и лишь в 1875 г. были выполнены опыты Керра, надежно установившие явление. Керр показал, что многие жидкие диэлектрики становятся анизотропными под действием электрического поля. Опыты с жидкими диэлектриками имеют решающее значение, ибо для жидких веществ деформация, могущая возникнуть под действием электрического поля (электрострикция), не вызывает двойного лучепреломления ), так что в опытах с жидкостью мы имеем электрооптические явления в чистом виде. Описанный Керром эффект стал первым доказательством того, что оптические свойства вещества могут изменяться под влиянием электрического поля.  [c.528]

Из приведенных данных, относящихся к длине волны X = = 546,0 нм (зеленая линия), видно, насколько трудно исследование явления Керра в газах. В первых измерениях этого рода применялся конденсатор с длиной пластин 50 см и с расстоя,нием между ними около 4 мм, на которые накладывалась разностР потенциалов  [c.530]

Борн (1916 г.) дополнил теорию Ланжевена, приняв во внимание возможность существования молекул со значительным постоянным электрическим моментом, направление которого может не совпадать с направлением наибольшей поляризуемости. В таком случае молекула ориентируется внешним поле.м так, что по направлению внешнего поля стремится установиться ее постоянный момент, а направление наибольшей поляризуемости (т. е. наибольшей диэлектрической проницаемости) может составить заметный угол с направлением внешнего поля (играющим роль оптической оси). В зависимости от взаимного расположения этих двух направлений вещество может характеризоваться положительным или отрицательным значением постоянной Керра В. В частности, если направление максимальной поляризуемости совпадает с направлением постоянного момента, то В > 0 если они взаимно перпендикулярны, то В < 0. При некотором промежуточном положении В может равняться нулю, т. е. вещество не обнаруживает явления Керра. Отсюда понятно, почему вещества с близкими электрическими моментами и не сильно различающимися поляризуемостями (показателями преломления) могут очень сильно отличаться по отношению к эффекту Керра. Так, метилбромид имеет постоянную Керра, в сотни раз большую, чем метиловый спирт, хотя электрические моменты их и поляризуемости отличаются незначительно.  [c.533]

Измерение времени существования явления Керра было начато Абрагамом и Лемуаном (1899 г.) и несколько раз повторялось вплоть до 1939 г. Во всех этих работах не удавалось измерить искомое время с удовлетворительной точностью, но можно было только сказать, что оно меньше 10 с, а в некоторых случаях даже меньше 10 = с.  [c.534]

Количественное определение времени существования явления Керра удалось произвести только с применением мощных и коротких импульсов лазерного света. На рис. 27.5 представлена схема опыта. Мощный импульс света с длиной волны X = 1,06 мкм и длительностью порядка 10 с проходит через кристалл дигидрофосфата калия КН2РО4 (KDP), в которо.м небольшая его часть превращается в свет с удвоенной частотой, т. е. его длина волны 7 = 0,53 мкм (подробно об этом явлении см. 236). Зеркало Si пропускает инфракрасный свет и отражает зеленый, а зеркало пропускает зеленый и отражает инфракрасный. За зеркалом расположена  [c.535]


Наличие дисперсии света является одним из фундаментальных- затруднений первоначальной электромагнитной теории света Мак- свелла. Эта теория, связавшая воедино электромагнитные и опти- ч/ ческие явления, представляла громадный шаг вперед и стала научным обобщением крупнейшего масштаба. Трприя )я1 гвр.п.пя-позволила раскрыть смысл явления Фарадея (вращение плоскости поляризации в магнитном поле), открытого почти за четверть века до того она, несомненно, стимулировала дальнейщие изыскания в области магнето- и электрооптики, приведшие к двум важным открытиям Керра двойного лучепреломления в электрическом поле и поворота плоскости поляризации при отражении от намагниченного ферромагнетика. Наконец, теория Максвелла устранила ряд неясностей и противоречий упругой оптики.  [c.539]

Полученные результаты имеют не только научное, но и практическое значение, потому что именно этими временами определяется время существования двойного лучепреломления в электрическом поле (явление Керра, см. 152) и, следовательно, эти времена определяют минимальную экспозицию при использовании ячейки Керра в качестве фотографического затвора. Такой затвор теперь находит широкое применение при исследовании различных бы-стропротекающих процессов и имеет другие практические применения.  [c.598]

Оптические квантовые генераторы оказали и, несомненно, будут оказывать в дальнейшем значительное влияние на развитие оптики. Изучение свойств самих лазеров существенно обогатили наши сведения о дифракционных и интерференционных явлениях (см. 228—230). Распространение мощного излучения, испущенного оптическим квантовым генератором, сопровождается так называемыми нелинейными явлениями. Некоторые из них — вынужденное рассеяние Мандельштама — Бриллюэна, вынужденное рассеяние крыла линии Рэлея и вынужденное температурное рассеяние — описаны в главе XXIX выше упоминались также многофотонное поглощение и многофотонная ионизация (см. 157), зависимость коэффициента поглощения от интенсивности света (см. 157), нелинейный или многофотонный фотоэффект (см. 179), многофотонное возбуждение и диссоциация молекул (см. 189), эффект Керра, обусловленный электрическим полем света (см. 152) сведения о других будут изложены в 224 и в гл. ХК1. Совокупность нелинейных явлений составляет содержание нелинейной оптики и нелинейной спектроскопии, которые сформировались в 60-е годы и продолжают быстро развиваться.  [c.770]

До обнаружения обсулгдаемого явления (1966 г.) наиболее короткие световые импульсы, получающиеся нелазерными методами, формировались из непрерывного излучения с помощью электрооп-тических затворов, основанных на эффекте Керра. Наименьшая длительность импульсов составляла примерно с, т. е. была на несколько порядков больше, чем у лазерных импульсов, описанных выше.  [c.813]

Другим примером искусственной анизотропии является анизотропия, возникающая в веществе под влиянием внещнего электрического поля. Этот вид анизотропии был открыт в 1875 г. Керром и носит название эффекта Керра. Вначале двойное лучепреломление в электрическом поле было обнаружено в твердых диэлектриках при помещении их между пластинками заряженного конденсатора. Однако было сомнение в том, что электрическое поле в данном случае играет косвенную роль и двойное лучепреломление появляется в результате механической деформации, вызванной полем (явление электрострикции >). Непосредственное влияние электрического поля было установлено после того, как явление двойного лучепреломления было обнаружено в жидкостях, в которых статическое сжатие не вызывает оптической анизотропии. Впоследствии (1930) двойное лучепреломление под действием электрического поля было найдено в парах и газах. Хотя эти измерения гораздо сложнее, чем измерения в жидкостях, поскольку эффект мал, однако теория эффекта Керра применима к ним с меньщнми допущениями.  [c.65]

Существует несколько причин такого изменения показателя преломления. В нелинейной среде из-за элект-рострикции световая волна приводит к изменению постоянного давления. В результате действия электрострик-ционного давления изменяется плотность, а следовательно, и показатель преломления среды. В жидкостях с анизотропными молекулами электрическое поле мощной световой волны оказывает ориентирующее действие на молекулы. При этом среда становится двоякопреломля-ющей и в показателях преломления для обыкновенной и необыкновенной волн появляются добавки, пропорциональные в первом приближении квадрату амплитуды поля. Данное явление подобно эффекту Керра (см. 19.2). Показатель преломления всегда изменяется в результате нагревания среды, вызванного поглощением излучения.  [c.309]

В общем случае наложение направленных внешних воздействий приводит к снижению симметрии в системе, что при наличии вырожденных состояний всегда выражается в частном или полном снятии вырождения. Это проявляется в таких хорошо известных явлениях, как эффекты Штарка, Поккельса или Керра во внешнем электрическом поле, эффекты Зеемана, Фарадея или Фойгхта во внешнем магнитном поле, пьезоспектроскопический эффект и др.  [c.193]

КЁРРА ЭФФЕКТ — название трёх явлений, два из к-рых (I и ]П) были открыты Дж. Керром (J. Кегг) в 1875 (эл.-онтич. К. э.) и в 1876 (маги.-оптич. К. э.) после появления лазеров в сильных оптич. полях был замечен эффект, аналогичный эл.-оптич. К. э., к-рый назвали оптич. К. э.  [c.348]

Отд. область М. составляют магнитооптич. явления в ферромагнетиках, заключающиеся во влиянии намагниченности на состояние поляризации при отражении света от металла или прохождении его через тонкие плёнки (см. Керра аффект магнитооптический) и объясняемые в рамках квантовой теории взаимодействия внеш. и внутр. электронов ферромагнетика и влияния спие-орбитального взаимодействия на поглощение света.  [c.112]

Нелинейный отклик сйеЙодных и связанных оптич. электронов — универсальная, но не единственная причина возникновения нелинейных оптич. явлений. Существенными оказываются нелинейные колебания многоатомных молекул и кристаллич. решётки, возбуждение светом явлений дрейфа, диффузии зарядов в кристаллах (фоторефрактивный эффект), индуцированная световой волной ориентация анизотропных молекул в жидкостях и жидких кристаллах (оптический Керра зффект), электрострикция, разл. тепловые эффекты и т. п. Перечисленные механизмы приводят к появлению оптич. нелинейностей, существенно различающихся по величине и времени установления нелинейного отклика Хил- Для наиб, быстрой нерезонансной электронной нелинейности Тдл 10 с , для инерционной тепловой нелинейности > 10 с.  [c.295]

Рассмотрим сначала процессы, которые имеют место при распространении импульса в оптическом волокне. Прежде всего заметим, что при данном диаметре небольшого ядра одномодового волокна ( 4 мкм) импульс создает внутри ядра очень высокую интенсивность излучения. В этих условиях поле световой волны вызывает значительные изменения показателя преломления Ьп материала волокна. В действительности это изменение 6п пропорционально квадрату амплитуды поля импульса, так что мы можем записать Ьп = П2еА , где для кварца П2е X 10 mYB . Это явление обычно называют оптическим эффектом Керра. Поскольку интенсивность I пропорциональна А , величину 6п можно записать в более общепринятом виде  [c.518]



Смотреть страницы где упоминается термин Керра явление — : [c.300]    [c.357]    [c.510]    [c.286]    [c.515]    [c.164]    [c.289]    [c.294]    [c.10]    [c.527]    [c.532]    [c.534]    [c.537]    [c.537]    [c.834]    [c.923]   
Оптика (1976) -- [ c.0 ]



ПОИСК



Двойное лучепреломление в электрическом поле (явление Керра)

Керра

Явление



© 2025 Mash-xxl.info Реклама на сайте