Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Предел выносливости на поверхности металла

Состояние поверхности деталей, концентраторы напряжений, окружающая среда, температура и прочие факторы настолько сильно влияют на сопротивление усталости, что сама по себе усталостная прочность металла гладких шлифованных образцов не является сколько-нибудь показательной. Кроме того, между пределом выносливости a i образцов и временным сопротивлением разрыву для сталей существует довольно устойчивая зависимость (рис. 12), которую можно использовать для расчетного определения предела выносливости на основе кратковременных испытаний на растяжение [81]. В большинстве случаев испытания на усталость ведут при напряжениях от изгиба или кручения. Реже применяют осевые (растяжение-сжатие) или сложные нагрузки (изгиб -f кручение и др.). При этом различают испытания при заданных величинах напряжений (мягкая нагрузка) и деформаций (жесткая нагрузка). В последнем случае усталостной характеристикой испытуемого объекта является предельная величина  [c.19]


Наличие окалины после прокатки понижает сопротивление усталости металла. Прокатная окалина понижает предел выносливости мягких сталей на 10—17% 1111, 112, 261 ], низколегированных сталей — на 25% [235]. Низколегированная сталь с прокатной окалиной имела предел выносливости на 3 кгс/мм ниже, чем сталь с механически зачищенной поверхностью.  [c.91]

Шлифование поверхности образцов из основного металла увеличивает их предел выносливости на 20—35% (табл. 1).  [c.364]

Холодная обработка (прокатка, волочение и т. п.) металла испытуемых образцов повышает предел выносливости тщательная отделка поверхности образца также увеличивает получаемый предел выносливости. Хорошо отшлифованные образцы дают при испытании предел выносливости на 15—20% выше по сравнению с грубо обработанными образцами.  [c.311]

Переменное напряжение при циклической нагрузке, не влияя на ход общей коррозии, вызывает развитие глубинной>у коррозии (этот термин можно ввести для обозначения коррозии, протекающей в микротрещинах усталости. Межкристал-литная и внутрикристаллитная коррозии — частные случаи глубинной коррозии). Глубинная коррозия, как показали наши исследования, вызывает на поверхности металла значительное число (в основном внутрикристаллитных) микротрещин, содержащих в себе продукты окисления. В неактивной среде, количество микротрещин, появляющихся под влиянием переменных напряжений, гораздо меньше и зависит от величины коэффициента циклической перегрузки, причем при малых коэффициентах может наблюдаться появление. лишь одной трещины усталости. В отличие от этого в коррозионной среде, даже при коэффициенте циклической перегрузки, равном 1 (расчет по условному пределу выносливости при 20 10 ), исследуемый металл весь покрывается перпендикулярными к действующим нормальным напряжениям микротрещинами [48].  [c.174]

Надо отметить, что эти значения являются приближенными и в отдельных случаях могут меняться. Это связано с тем, что значение предела выносливости для основного металла, определяемое по результатам испытания образцов с сохраненной прокатной поверхностью, зависит от состояния этой поверхности. А так как определенных требований по отношению к качеству поверхности проката пока еще не предъявляется, то существующий неизбежный разброс в значениях предела выносливости влияет и на точность определения коэффициентов i ).  [c.35]


Важным преимуществом смыв-процесса по сравнению с обычной резкой являются также и высокие механические свойства металла реза, достигаемые в результате повышения чистоты поверхности реза (устранение бороздок). Угол изгиба до появления трещин составляет 95—116°, ударная вязкость порядка 33—37 кгс/см , а предел выносливости на базе 2 млн. циклов нагружений достигал 96,5% усталостной прочности образцов с прокатными кромками, что на 35—40% выше, чем у образцов с кромками после обычной кислородной резки (рис. 48).  [c.80]

Режим и технология точения также могут определенным образом влиять на усталостную прочность. Высокая скорость резания и большая подача заметно снижают предел выносливости вследствие повышения шероховатости поверхности и появления неблагоприятных поверхностных напряжений. Однако имеются режимы резания, которые создают поверхностный наклеп и сжимающие напряжения, повышающие предел выносливости титана. Замечено отрицательное влияние на усталостную прочность титановых сплавов охлаждения жидкостями (вода, эмульсия и пр.) при высоких скоростях резания точением. В этом случае происходит поверхностное наводороживание и даже появление гидридных пленок и слоев, способствующих возникновению растягивающих напряжений и хрупкости поверхности. Во всех случаях конечные операции механической обработки деталей из сплавов титана, подвергающихся систематическим циклическим нагрузкам, необходимо строго регламентировать, а еще лучше предусмотреть специальную поверхностную обработку, снимающую все неблагоприятные поверхностные явления и упрочняющую металл.  [c.181]

Ранее была отмечена особая чувствительность усталостной прочности титановых сплавов к характеру финишной поверхностной обработки.. Естественно, что многие исследования были направлены на разработку специальных методов поверхностного упрочнения титана, максимально повышающих его предел выносливости. Выявлен наиболее эффективный способ—применение различных видов ППД. Этот способ уже широко используют для многих металлов, а для титановых сплавов он оказался крайне необходимым и перспективным. По исследованиям в этом направлении в настоящее время постоянно публикуется большое число работ (главным образом в периодической литературе). Можно без преувеличения утверждать, что основные резервы повышения усталостной прочности титановых сплавов состоят именно в правильном выборе метода ППД и финишного сглаживания поверхности деталей, подвергающихся циклической нагрузке. Если для стали основная польза ППД заключается в создании сжимающих поверхностных напряжений, то для титановых сплавов, как уже показано, имеет не меньшее значение повышение прочности (за счет наклепа) и однородности механических свойств поверхностных слоев. Часто поверхностный наклеп титана необходим, чтобы снять неблагоприятный эффект предшествующей обработки, которую исключить из технологического процесса не всегда уда ется (например, шлифование или травление).  [c.196]

Усталостная трещина всегда возникает в той точке металла, где отношение местного напряжения к пределу выносливости металла самое низкое. Обычно эти точки находятся на поверхности детали. Объясняется это тем, что прочность металла по его поперечному сечению сравнительно одинакова, а максимальное напряжение при кручении или изгибе находится в крайних волокнах. Иная картина наблюдается при наличии трещин или других металлургических дефектов внутри материала. Эти дефекты приводят к понижению прочности материала в окрестности дефекта. В результате внутри детали развивается трещина, которая распространяется как в направлении к поверхности, так и к центру детали.  [c.60]

Распределение напряжений, возникающих при качении со скольжением, показано на рис. 21. Усталостная трещина появляется, когда максимальные подповерхностные касательные напряжения превосходят предел выносливости материала, а развивается параллельно поверхности. В конечном итоге усталостная трещина приводит к отделению части металла и образованию оспинки выкрашивания. При реверсивном воздействии напряжений усталостные трещины развиваются по нормали к поверхности в глубь металла.  [c.68]


Усталостные трещины могут появляться вследствие прессовой посадки втулки на вал или другую деталь без принятия каких-либо мер для уменьшения возникающих в этих местах напряжений. Так, при насадке втулки с натягом на гладкий вал его предел выносливости снижается на 45—50%. При этом надо учитывать, что при таких посадках возможно схватывание поверхностей и нарушение сплошности контактируемых металлов с образованием при этом мельчайших трещин, что также снижает предел выносливости.  [c.126]

Изучение влияния условий нагружения на характер изменения остаточных напряжений II рода показало [34], что при упруго-пластическом деформировании железа (выше предела выносливости) в воздухе уже при малой базе числа циклов нагружения (10 — 5 10 циклов) остаточные напряжения растут до 300—350 МПа и при дальнейшем увеличении базы испытания изменяются мало. В присутствии такой поверхностно-активной среды, как 2 %-ный раствор олеиновой кислоты в вазелиновом масле, характер изменения остаточных напряжений существенно меняется. При малых базах испытания уровень напряжений ниже, чем при испытании в воздухе, а при больших базах — значительно выше и достигает 900 — 950 МПа. Отсюда следует, что поверхностно-активные среды уменьшают энергию выхода на поверхность дислокаций и при напряжениях, превышающих предел выносливости, упрочнение металла происходит медленнее, но степень упрочнения с увеличением числа циклов нагружения значительно выше, чем при испытании в воздухе. При этом по данным рентгеновского анализа зерна феррита в поверхностно-активных средах более интенсивно дробятся на различно ориентированные субзерна, что выражается в большой степени наклепа. При низких уровнях напряжений вследствие охвата пластическим течением большого количества зерен поверхностно-активная среда разупрочняет металл.  [c.16]

Обезуглероженная поверхность проката с большим слоем окалины может существенно (на 25% и более) снизить предел выносливости основного металла [3].  [c.151]

Влияние обработки поверхности на предел выносливости металлов  [c.465]

Повышение предела выносливости созданием остаточных поверхностных напряжений сжатия. Установлено, что предел выносливости образцов и деталей можно значительно повысить путем создания на их поверхности предварительных напряжений сжатия (накатка роликами, наклеп молотком, дробеструйный наклеп). Напряжения сжатия на поверхности деталей создаются также поверхностным упрочнением, например, азотированием, цианированием и цементацией или поверхностной высокочастотной закалкой. Напряжения сжатия можно обнаружить при разрезке деталей и образцов или постепенным удалением внутренних слоев металла и измерением деформации разрезанных частей.  [c.78]

Износ шестерен может быть абразивным, от молекулярного схватывания и осповидным. Особенно часто у шестерен появляется осповидный износ (питтинг), в результате которого на поверхности зуба получаются характерные изъязвления или оспины (фиг. 200). Объясняется это действием сильных переменных напряжений сжатия на поверхности зуба при работе шестерни. После нескольких миллионов циклов напряжений сжатия под поверхностью контакта у зубьев на небольшой глубине образуются трещины усталости. В результате от поверхности зуба отделяются небольшие чешуйки металла (язвы, оспины), что и дало основание назвать такой износ осповидным. Чем выше твердость поверхности и чем выше предел текучести сердцевины зуба, тем выше контактная выносливость.  [c.334]

Степень влияния коррозионных повреждений поверхности деталей на сопротивление усталости зависит от свойств материала и среды, характера нагружений и времени. Предварительное перед испытаниями коррозионное воздействие на образцы не столь опасно как одновременное действие коррозионных и механических факторов. Кривая усталости при коррозионных воздействиях на металл никогда не выходит на горизонталь. Она снижается с ростом числа циклов или времени испытаний. В пределе можно считать, что как бы ни были малы переменные напряжения, они приведут к разрушению образца при достаточно большом числе циклов испытаний. Следовательно, при коррозионной усталости нельзя установить предела выносливости, а можно лишь говорить о предельном сопротивлении усталости при ограниченном числе циклов (например, на базе 10 или 5 10 циклов).  [c.25]

Последнее обстоятельство является особенно существенным. Во многих случаях остаточные напряжения в зонах концентраторов сохраняются без изменений даже после нагружения детали до пределов, близких к пределу выносливости или превышающих его. При выполнении сварных швов с небольшими концентраторами роль остаточных напряжений будет также сравнительно небольшой. Если деталь с доброкачественным швом подвергается механической обработке, то усталостная прочность детали будет определяться в основном качеством наплавленного на шов металла и переходной зоны, а влияние остаточных напряжений при этом будет тем меньше, чем мягче и пластичнее свариваемый и наплавленный металл. При недостаточно качественной сварке вредные концентрации напряжений могут возникать в зонах разнообразных дефектов сварки как выходящих на поверхность, так и расположенных в глубине шва.  [c.34]

Так, предел выносливости сварных пластин (рис. 62, в), имитирующих приварку лопастей к ободу дымососа, в результате наклепа необработанной поверхности шва и околошовной зоны повысился на 85% [86]. После поверхностного упрочнения образцов трещины усталости перешли на основной металл за околошовную зону.  [c.113]


Неровности, являясь концентраторами напряжений, снижают сопротивление усталости деталей, особенно при наличии резких переходов, выточек и т.п. При выглаживании поверхностей (после точения или шлифования) алмазными наконечниками предел выносливости и износостойкость увеличиваются. На грубо обработанных поверхностях, особенно в местах концентрации напряжений, быстрее возникает и распространяется коррозия металла, сопротивление усталости в этом случае снижается в несколько раз. Шероховатость поверхности и твердость — управляемые факторы. Заданную шероховатость поверхности можно полу-  [c.380]

При напряжениях, меньших предела выносливости, микротрещины остаются в наружном слое толщиной не более размера зерна, поскольку границы зерен — барьеры для их распространения. При напряжениях выше предела выносливости микротрещины преодолевают границы зерен, сливаются, образуя магистральную трещину усталости. Трещина усталости растет прерывисто — скачками, связанными с местной пластической деформацией (наклепом) металла у ее вершины. Для распространения трещины на некоторую длину необходимо, чтобы у ее вершины была исчерпана пластичность. По этой причине у пластичных металлов сопротивление распространению трещины усталости много выше, чем ее зарождению. Увеличению сопротивления зарождению трещины усталости способствует структурное состояние, препятствующее движению дислокаций и их выходу на поверхность. Наиболее эффективно его создают поверхностным упрочнением.  [c.274]

Аналогичное влияние качества обработки поверхности на предел выносливости свойственно и другим металлам и сплавам, в частности легким сплавам [82]. Так, для лабораторных образцов, выточенных из дюралюмина, коэффициент р = 0,85 -7- 0,9 (т. е. снижение предела выносливости у точеных образцов по сравнению с полированными составляет 15—10%) для образцов из магниевых сплавов при обточке Р = 0,7 -f- 0,8 для деталей из легких сплавов, содержащих на поверхности литейную корку, окалину и другие дефекты литья, прессования или прокатки, Р = 0,5 0,75 при обдувке песком или дробью литейной или прокатной корки р = 0,8 1,0.  [c.146]

Из других видов поверхностной обработки титановых сплавов заслуживает внимания ионное покрытие поверхности (слоем около 1 мкм) различными металлами—платиной, алюминием [181, 182], которое не только увеличивает теплостойкость Титановых сплавов, но и повь1шает предел выносливости на 50—100 МПа.  [c.185]

Если на поверхности металла течение облегчено, то следует ожидать, что чем тоньше образец, тем больше на его пластическом течении будет сказываться влияние поверхностного слоя. В самом деле, в работе 13171 установлено, что при сжатии, изгибе и кручении труб из низкоуглеродистой стали с уменьшением толщины стенки предел текучести снижается. Авторы этого исследования пришли к выводу, что поверхностный слой в низкоуглеродистой стали имеет предел текучести на 25 % меньше, чем основной металл при однородном распределении напряжений. В этом плане интересны также результаты работы 12821, где испытывали на растяжение образцы различной толщины (от 0,045 до 1,840 мм) из чистых поликристаллов алюминия, меди и железа. Предел текучести самых тонких образцов составлял всего 20 % величины, наблюдаемой цля толстых образцов. Это явление связывается с тем, что зерна на поверхности находятся в напряженном состоянии, отличном от такового для зерен внутри образца. Вместе с тем аналогичные результаты были получены и на монокристаллах. В работе 13] есть подробный обзор iio данной проблеме. Выводы, к которым пришел автор этой работы в результате анализа существующих экспериментальных данных, позволяют выделить три основных случая механические свойства поверхностного слоя выше, равны и ниже, чем у материала в середине образца. Выводы противоречивы. По-видимому, это связано с разнообразием исследованных материалов и методик. Тем не менее прямых механических методов измерения свойств поверхностного слоя материала предложено не было. Однако, как уже было отмечерю, для оценки предела выносливости и условий нераспространения коротких трещин важно знать свойства именно поверхностных слоев.  [c.96]

Процесс разрушения металла можно рассматривать и с других позиций. Известно, что движущийся поток жидкости состоит из большого числа мельчайших струек, которые при движении сливаются и опять возникают. С увеличением напора растет степень их возмущений, меняются форма и размеры. В этих условиях пластическая деформация металла возникает не при каждой микроударе жидкости. Если сила удара превышает предел текучести, то на поверхности металла образуется вмятина пластически выдавленный металл располагается вокруг этого углубления в виде наплъша. Следующий мощный удар соседнего объема жидкости перемещает этот наплыв металла в исходное положение или в другое место. Таким образом, поверхность металла на отдельных микроучастках подвергается воздействию знакопеременной нагрузки. При этом агрессивная среда значительно снижает предел выносливости металла.  [c.37]

Коррозионная выносливость. Тонкая плотная невидимая пленка окислов на поверхности металла предохраняет его от коррозии. Напряжения, разрушающие эту пленку, способствуют коррозии. Опыт показывает, что сталь и цветные металлы в условиях коррозии имеют очень низкий предел выносливости именно потому, что у них непрерывно разрушается пленка окислов. Например, большинство углеродистых и легированных конструкционных сталей даже в такой малоагрессивной среде, как простая вода, разрушаются при напряжении всего 15 + 3 кг/мм-, если подвергаются действию переменных нагрузок. В условиях более агрессивной среды (морская вода, раствор сернистых газов и т, д,) предел коррозионной выносливости значительно ниже, чем в простой воде.  [c.149]

Коррозионная усталость. Предел выносливости металлических материалов очень сильно зависит от коррозионной среды. Установлено, что при воздействии на металл различных коррозионных факторов предел выносливости понижается. В реальных условиях эксплоатации машин многие детали подвергаются одновременному воздействию переменных напряжений и коррозионной среды, что сильно понижает кх усталостную прочность. При воздействии на детали ыашпн знакопеременных напряжений в условиях дополнительного воздействия коррозионной среды вызывается более значительное их усталостное разрушение. Продукты коррозии, образуюш,иеся на поверхности металла  [c.47]

Де — медианное значение предела выносливости на совокупности исех плавок металла данной марки, определенное иа гладких лабораторных образцах диаметром do = 7,5 мм, изготовленных из заготовок диаметром > i o, равным абсолютному размеру детали сг [ медианное значение предела выносливости на совокупности всех плавок металла данной марки, полученное при испытаниях гладких лабораторных образцов диаметром tl — 7,5 мм, изготовленных из заготовок размерами 10. 20 мм Kj — коэффициент, учитывающий ухудшение механических свойств металла (а , < i) с ростом размеров заготовок Л — эффективный коэффициент концеитрации напряжений — коэффициент влияния абсолютных размеров поперечного сечения Kpfj — коэффициент влияния шероховатости поверхности Ki, — коэффициент влияния поверхностного упрочнения  [c.269]


Как показывают приведенные на рис, 22,15 графики, чувствительность стали к состоянию новерхности возрмстает с увеличением ее прочности. Поэтому детали из легированных сталей требуют особо тщательной обработки. Цветные металлы и чугун мало чувствительны к обработке поверхности. По экспериментальным данным, упрочнение поверхности детали может дать значительное повышение предела выносливости. Это упрочнение может быть получено как за счет холодной обработки металла — паклена (обработка  [c.591]

Переменные контактные напряжения вызывают усталость поверхностных слоев деталей. На поверхности образуются микротрещины с последующим выкрашиванием мелких частиц металла. Если детали работают в масле, оно проникает в микротрещины (рис. 180, а). Попадая в зону контакта (рис. 180, 6), трещина закрывается, находящееся внутри трещины масло сжимается в замкнутом пространстве, и в нем создается высокое давление, распирающее стенки трещины. При повторных нагружениях трещина все более увеличивается, отделяемая ею частица металла откалывается от поверхности, образуя раковину (рис. 180, в). Экспериментальные кривые, характеризующие стойкость материала в отношении усталостного выкрашивания, построенные в координатах контактное напряжение — число циклов нагружений (см. рис. 179, г), подобны обычным кривым выносливости (см. рис. 158). Базовому числу циклов Л но соответствует предел выносливости Offo, величина которого в основном зависит от твердости материала. По пределу выносливости определяют допускаемое напряжение, исключающее усталостное выкрашивание рабочих поверхностей.  [c.214]

На II участке также протекают процессы микропластической деформации поверхностных слоев металла, однако конкурирующий процесс пассивации поддерживает относительную стабильность потенциала в течение времени до появления усталостных микротрещин. С появлением этих микротрещин наблюдается интенсивный сдвиг потенциала в отрицательную сторону (см. рис. 27, участок III) по аналогии с углеродистыми сталями. При увеличении глубины коррозионно-усталостной трещины возможна некоторая стабилизация потенциала на поверхности образца (участок IV). Участок V кривой соответствует спонтанному разрушению образца, т.е. его долому. Участок VI соответствует пассивации зон доло-ма. При циклических напряжениях, близких к пределу выносливости образцов, их потенциал почти не отличается от потенциала ненагруженных образцов и находится в пассивной области при большой длительности нагружения. Признаков коррозионно-усталостного разрушения на их поверхности не обнаружено.  [c.65]

Диффузионное насыщение стальных изделий бором приводит к образованию на их поверхности слоя, состоящего из боридов FeB и Fe В, а также боридного цементита, если в стали содержится повышенное содержание углерода. Бориды железа обладают высокой коррозионной стойкостью в ряде агрессивных сред,в связи с чем можно было бы ожидать существенного повышения сопротивления коррозионно-усталостному разрушению борированных деталей. Нами показано, что борирование при глубине слоя боридов 0,1-0,2 мм повышает предел выносливости образцов из средйе-углеродистой стали с 250 до 300-310 МПа, а в 3 %-ном растворе Na I условный предел выносливости увеличивается с 50 до 100 МПа. Отрицательное влияние борирование оказывает на сопротивление усталости высокопрочных легированных и закаленных сталей, у которых предел выносливости после насыщения может снизиться в несколько раз. Условный предел выносливости при этом увеличивается незначительно. Таким образом, наблюдается несоответствие между коррозионной стойкостью в ненапряженном состоянии и коррозионной выносливостью борированных сталей. Это несоответствие объясняется пористостью боридного слоя, которая при действии циклических механических напряжений обеспечивает лучший контакт коррозионной среды о основным металлом, чем в ненапряженном металле.  [c.174]

Чтобы не допустить снижения усталостной прочности, обусловленного проведением ЭЛС, сварные соединения следует подвергать отжигу. Отжиг при температуре 923 К (650 С) приводит к увеличению предела выносливости сварного соединения до уровня предела выносливости осношого металла. Отжиг на данную температуру рс ж-но проводить в печах с окислительной атмосферой без риска получить на поверхности окисленный слой [ ].  [c.15]

Подача ролика при обкатке оказывает влияние на чистоту и упрочнение, металла. Малые подачи обеспечивают лучший результат. Наиболее эффективно действуют первые 1—3 прохода. Увеличение числа проходов может привести к перенаклепу и увеличению шероховатости поверхности, а в некоторых случаях к понижению предела выносливости. Рекомендуется обкатку роликом с цилиндрическим пояском производить при подачах 0,4—0,8 мм1об, но не более 0,5 от ширины пояска ролика при двух проходах  [c.164]

В качестве трубопроводов гидросистем машин в основном применяют бесшовные цилиндрические трубы из сталей СЮ и С20 (ГОСТ 8734—58) и реже трубы из цветных металлов. Для гидросистем самолетов применяют преимущественно трубопроводы из нержавеющей стали 1Х18Н9Т и реже — из сталей ЗОХГСА и 20 в отдельных случаях применяют трубы из высокопрочного сплава на медной основе. Для сверхвысоких давлений (500—7000 кПсм ) применяют трубы из специальных легированных сталей с механической обработкой внутренней поверхности. Для специальных целей применяют также трубы из никеля, титана и различных сплавов. Трубопроводы из титановых сплавов имеют преимущества перед стальными трубопроводами по удельному весу и жаропрочности, но значительно уступают им по пределу выносливости и допустимым усталостным напряжениям.  [c.571]

При д )обеструйном наклепе необходимо добиваться наибольшего повышения напряжений сжатия, которые желательно получить близкими к пределу teKy4e TH обрабатываемого металла. Для создания высоких напряжений сжатия надо производить наклеп деталей, которые находятся под нагрузкой, создающей на обрабатываемой поверхности высокие напряжения растяжения. Например, на автомобильных заводах путем дробеструйного наклепа рессор на специальной установке, позволяющей обрабатывать их поверхность в напряженном состоянии, в течение 1 жик удалось получить напряжения сжатия на поверхности рессор близкими к пределу текучести, т. е. наивысшими. Это позволило дополнительно повысить предел выносливости рессор примерно на 50%, а долговечность увеличить в 8 раз, что дало возможность отечественным заводам добиться значительного снижения веса рессор за счет уменьшения в них количества листов.  [c.297]

Предел выносливости соединений, сваренных по грунту электродами УОНИ-13/55 с поверхностью упрочненными многобой-ковым устройством необработанными швами и околошовной зоной, оказался равным 26,5 кгс/мм , что на 62% выше предела выносливости сварных соединений с удаленной прокатной окалиной и составляет 79% от предела выносливости основного металла (см. табл. 16).  [c.98]

Повреждения поверхностей вследствие фреттинг-коррозии служат концентраторами напряжений и снижают предел выносливости. Более сильное действие оказывает электроэрозия образуются вакантные (не занятые атомами) места в кристаллической решетке в результате термотоков, возникающих при неравномерном распределении температур в зоне неметаллического контакта трущихся металлов 145]. Снижение сопротивления усталости от действия этих факторов колеблется в широких пределах (10. .. 60 %). Иногда усталостные трещины из-за фреттинг-коррозии появляются на валах под напрессованными деталями в местах, расположенных вдали от расчетных опасных сечений. Автомобильная фирма Рольс-Ройс (Англия) около 50 лет назад столкнулась с фактами коррозионных повреждений и последующих поломок листов рессор автомобилей. Предполагая вначале, что коррозия является следствием проникновения влаги между листами, фирма тщательно обработала рабочие поверхности листов. Однако корродирование и разрушение продолжалось. Так и не установив причин этого явления, фирма вышла из создавшегося положения, введя кадмиевое покрытие листов. Фактически здесь имела место фреттинг-коррозня, которая в то время не была еще широко известна как особое явление.  [c.221]


Смотреть страницы где упоминается термин Предел выносливости на поверхности металла : [c.119]    [c.207]    [c.29]    [c.50]    [c.80]    [c.197]    [c.176]    [c.55]    [c.17]    [c.55]    [c.142]   
Трещиностойкость металлов при циклическом нагружении (1987) -- [ c.96 , c.97 , c.100 ]



ПОИСК



Выносливости предел

Выносливость

Металлы Предел выносливости

Поверхность металла



© 2025 Mash-xxl.info Реклама на сайте