Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Разрушения виды состоянии

При другой форме образцов и геометрии полей наблюдается более сложная картина разрушения сверхпроводимости полем. В качестве примера рассмотрим случай, когда образец в форме длинного цилиндра помещен в поперечное поле. Из фиг. 3 мы видим, что поле на его экваторе равно удвоенному значению внешнего ноля, т. е. поле в этой точке достигает критического значения, когда приложенное поле равно Я р /2. В случаях, подобных этому, образец переходит в состояние, характеризующееся одновременным наличием нормальных и сверхпроводящих областей и называемое промежуточным состоянием. По мере увеличения внешнего поля относительное количество нормальной фазы возрастает наконец, когда поле достигает критической величины, исчезают последние следы сверхпроводящего состояния. Таким образом, разрушение сверхпроводящего состояния образца происходит в некотором интервале величин приложенного магнитного поля.  [c.615]


Учет влияния смещения центра эллипса привел к результатам, показанным на рис. 3, где для сравнения приведены расположение и размеры зон разрушения на изломе образца, подвергавшегося циклическому разрушению. Как следует из приведенных результатов, критические размеры трещин, соответствующие достижению одной из величин Кх, Ку, Ка, критического значения Kj , также существенно зависят от формы трещины в момент разрушения, вида напрян енного состояния и толщины пластины.  [c.239]

Таким образом, для безмоментного докритического состояния компоненты полей напряжений и деформаций постоянны по всему объему оболочки следовательно, для оценки состояния данной конструкции на прочность при заданной величине р достаточно проверить выполнение критерия разрушения вида (3.71) один раз для вычисленных по формулам (3.75) значений напряжений  [c.154]

Для оценки коррозионной устойчивости напыленных металлических покрытий чаще всего используется метод образцов-свидетелей, позволяющий сравнительно легко не только определять потерю (прирост) массы, но и исследовать продукты коррозии, оценивать число и положение питтингов, визуально интерпретировать характер коррозионных разрушений. Вид, форма и размеры образцов выбираются в зависимости от цели испытания. Образцы должны воспроизводить основные качества изделий материалы основы и покрытия, их контакт, состояние поверхности, толщину и технологию получения покрытия и др.  [c.207]

Хрупкое разрушение сварных соединений с трещиноподобными дефектами, металл которых находится в хрупком состоянии (например, закаленная ЗТВ), становится возможным, если действительный коэффициент интенсивности напряжений у острия трещины К1 превысит критерий К[ . К[ может быть рассчитан по формулам линейной механики разрушения вида (рис. 1.55)  [c.76]

Скорость этих трех видов коррозионных разрушений зависит от состава стали и структурного состояния.  [c.496]

Особенностью этого вида разрушения по сравнению с обычной коррозионной усталостью является соизмеримость периодически напряженных участков с размерами отдельных кристаллов металла (напряжения второго рода). В связи с этим на кавитационную стойкость сплавов большое влияние оказывают механическая прочность, структура и состояние границ зерен сплава. Например, чугун с шаровидным графитом более устойчив к кавитации, чем обычный чугун, а еще более устойчивы стали.  [c.341]

Следует отметить, что в (2.11) физический смысл S вполне соответствует интерпретации этого параметра, достаточно устоявшейся в настоящее время критическое напряжение хрупкого разрушения S является параметром, достижение которого наибольшими главными напряжениями является достаточным условием для реализации хрупкого разрушения, т. е. для обеспечения страгивания и распространения микротрещины. При этом в качестве необходимого условия выступает условие зарождения микротрещин, которое многие исследователи, например в работах [101, 149—151], принимают в виде (2.3). В предлагаемом критерии хрупкого разрушения (2.11) необходимое условие хрупкого разрушения соответствует условию зарождения микротрещин скола в виде (2.7). Как уже говорилось, разрушающее напряжение а/ при одноосном растяжении образцов в диапазоне температур Го Г Тем (см. рис. 2.6 и 2.7) совпадает с напряжением распространения микротрещин Ор, тождественно равным S , что позволяет получать значения S (x) на основании указанных предельно простых экспериментов. Однако совпадение а/ с S не является общим правилом даже при хрупком разрыве в условиях одноосного растяжения в области температур Т <То разрушающее напряжение а/ не является напряжением распространения микротрещин (см. рис. 2.7), а соответствует напряжению, при котором выполняется условие зарождения микротрещин. Такая же ситуация наблюдается при хрупком разрыве в условиях объемного напряженного состояния, например при разрушении образцов с концентраторами и трещинами (см. подразделы 2.1.4 и 4.2.2).  [c.72]


Коррозионная стойкость хромистых сталей зависит также от режимов термической их обработки. Наиболее распространенным видом термической обработки, обеспечивающим высокую сопротивляемость коррозии хромистых сталей, содержащих хром в количестве около 13%, является закалка с отпуском. При нагреве сталей рассматриваемого типа до высоких температур (950—1000°С) достигаются условия, при которых карбиды хрома переходят в твердый раствор. Если фиксировать это состояние быстрым охлаждением (в масле или на воздухе), то углерод удерживается в твердом растворе. Следующий за процессом закалки отпуск при низкой температуре лишь снимает напряжения закалочного происхождения, незначительно изменяя основную структуру, и таким образом общая сопротивляемость стали коррозионным разрушениям сохраняется.  [c.216]

Коррозионные испытания металлов в напряженном состоянии. Как известно, коррозия металла в напряженном состоянии носит специфический характер и отличается как от чисто механического, так и от чисто электрохимического его разрушения. Характерным видом разрушения металла при постоянных растягивающих напряжениях является коррозионное растрескивание металла. Разработано много методов испытаний на устойчивость  [c.347]

Теория долговечности, строящая выводы на статистических данны.х. в сущности приложима к изделиям массового производства и в гораздо меньшей степени — к изделиям мелкосерийного и тем более единичного выпуска. В описанной выше трактовке теория долговечности исходит с феноменологических позиций, оперируя цифрами достигнутой долговечности. Гораздо большее значение имеет разработка методов повышения долговечности. Здесь на первый план выдвигается за/гача изучения физических закономерностей разрушения, износа и повреждения деталей (в зависимости от вида нагружения, свойств материала, состояния поверхностен и т. д.). Задачи эти настолько дифференцированы и специфичны, что вложить их в рамки общей теории долговечности едва ли возможно. Они решаются методами теории прочности, теории износа, а главным образом целенаправленной конструкторской и технологической работой над повышением долговечности.  [c.28]

Исследование конструктивной прочности рулонированных тонкостенных и толстостенных оболочек типа газопроводных труб и корпусов атомных реакторов Здесь имеются в виду как разработка теории расчета таких систем, так и экспериментальное исследование их напряженно-деформированного состояния (в том числе в упруго-пластической области) и разрушения под действием силовых нагрузок и теплосмен при неравномерном нагреве, а также малоцикловой усталости. Цель — установить их предельное состояние и разработать метод расчета таких объектов на прочность применительно к тем или иным условиям их эксплуатации.  [c.664]

Предлагались и другие гипотезы прочности. Проф. М. М. Филоненко-Бородич предложил записывать условие прочности в виде некоторого многочлена второй или даже третьей степени относительно главных напряжений, содержащего определенное число произвольных постоянных, которые определяются из опытов, в том числе и из опытов при сложном напряженном состоянии. Однако приведенные выше диаграммы разрушения хрупких материалов ясно показывают, что условие прочности материала не может быть выражено одной замкнутой функцией во всем диапазоне напряженных состояний.  [c.233]

Рассмотрены проблемы технического диагностирования и оценка ресурса безопасной эксплуатации сварных аппаратов. Представлены систематизированные характеристики и технические требования к изготовлению сосудов и аппаратов, работающих под давлением, обеспечению безотказности и долговечности отдельных видов нефтегазохимического оборудования. Рассмотрены механизмы разрушения материалов, роль технической диагностики в обеспечении надежности, современные методы диагностирования технического состояния сосудов и аппаратов. Отражены основные положения по оценке остаточного ресурса аппаратов Предназначено для студентов и аспирантов спец. 170500 Машины и аппараты химических производств и предприятий строительных материалов и спец. 171700 Оборудование нефтегазопереработки . Может бытЕ использовано специалистами в области диагностики и обеспечения промышленной безопасности объектов химической, нефтехимической, нефтеперерабатывающей и других производств.  [c.2]


Условия (критерии) пластичности и разрушения являются важными обобщениями понятий пределов текучести и прочности на случай трехмерного напряженного состояния. Эти условия можно записать в виде  [c.57]

Вид предельного состояния, связанного с необратимостью разрушения или нестабильностью пластической деформации, зависит от соотношения энергий, идущих на изменение объема и формы. Основной предпосылкой в теории Г,К. Си является предположение о том, что накопление повреждения в материале можно однозначно связать с величиной энергии, которая рассеивается единицей объема материала. Это позволило выделить пороговые стационарные значения функции плотности энергии деформации.  [c.283]

В природе в свободном виде содержатся в основном окп слы металлов, Конструкционные металлические материалы получают при выплавке путем восстановления окислов до чистых металлов. Далее готовому металлу придают требуемую форму конструкции. После этого металлическая конструкция, прослужив определенное время, разрушается и под воздействием кислорода окружающей среды постепенно вновь превращается в окислы. На рис. 8 показана эволюция металла, начиная от его естественного природного состояния в виде окислов через процесс получения чистого металла и до его полного разрушения и окисления. Траектория этой эволюции - замкнутый эллипс, но с учетом течения времени она разрывается и приобретает форму спирали. Отрезки траектории 1-2 и 2-3 обратно симметричны, что говорит о тесной взаимосвязи процессов формирования и разрушения.  [c.20]

В большинстве случаев коррозионного роста трещин процессы адсорбции, водородного охрупчивания и коррозионного растворения взаимосвязаны между собой и протекание одних обуславливает проявление других. Взаимосвязь этих процессов усложнена еще и влиянием структуры металла, вида напряженного состояния, внешних условий нагружения. Изучение этой взаимосвязи составляет предмет коррозионной механики разрушения — научного направления на стыке механики разрушения, металловедения и химического сопротивления материалов.  [c.370]

Фундаментальной особенностью поведения металлических материалов, подвергающихся разрушению, является непременное наличие перед разрушением микро - или макродеформации. В зависимости от структурного состояния, вида нагружения и асимметрии цикла предел выносливости ОЦК - металлов и сплавов может быть по своему значению выше и ниже физического предела текучести. В том случае, когда он ниже физического предела текуче-  [c.21]

Если затем пучок подвергнуть воздействию электромагнитного излучения с частотой v, соот-ветствующей переходу 2 -> 2 то число /г" метастабильных атомов уменьшится, что может быть обнаружено. Следует, однако, иметь в виду, что запрещенный правилом отбора для квантового числа I переход 2 2Si/2- l З Дпунктирная стрелка) в действительности все же осуществляется (хотя и с малой вероятностью) и ведет к разрушению метастабильного состояния 2 Si/ .  [c.575]

Однозначную трактовку излома затрудняет то, что в ряде случаев различным видам нагружения соответствует в основных чертах один и тот же характер разрушения, в то же время одинаковый вид нагружения в зависимости от состояния материала может привести к разрушению разного характера. Например, при усталостном нагружении листовых образцов из алюминиевого сплава системы А1—Си—Li в состоянии фазового старения наблюдается внутризеренное разрушение, в состоянии коагуляционного старения — межзеренное. Внутризеренное разрушение набюдается в большинстве материалов при однократном нагружении, усталости, а также замедленном разрушении при нормальной температуре, например в ряде титановых сплавов с псевдоальфа-структурой (0Т4, 0T4-I).  [c.7]

При испытаниях материалов на усталостное распростраиение трещины используются такие силовые схемы циклического нагружения специальных образцов, которые реализуют геометрически устойчивую кинетику усталостного разрушения, просты в экспериментальном осуществлении и для которых имеются соответствующие аналитические формулы по определению коэффициентов интенсивности напряжений. Вместе с тем, как отмечалось выше, важно, чтобы при распространении усталостной трещины соблюдались условия автомодельности зоны предразру-шения, т. е. реализовался в чистом виде один механизм усталостного разрушения (при состоянии плоской деформации или плоском напряженном состоянии).  [c.190]

Предельные состояния, а) В теории упругости обыкновенно принимают, что существует ряд определенных предельных состояний, при которых тела изменяют в сильной мере и исключительно в виде остаточной деформации свою форму, т. е. при эгих условиях они становятся пластическими и начинают течь или при этих состояниях происходит внезапное разрушение. Напряженное состояние определяется в общем тремя главными сиаами упругости ( 2 И 3, (растягивающее напряжение — положительное, сжимающее отрицательное, Согласно предыдущему, при-  [c.193]

Если на обследуемом объекте или его аналогах происходили отказы, то проводят анализ соответствующей технической документации, обращая внимание при этом на следующие данные дата и время разрушения стадия технологической операции, когда произошло разрушение температура и влажность окружающей среды степень и последствия разрушения вид, назначение и размеры объекта наличие на нем заводской или монтажной маркировки срок службы к моменту разрушения состояние поврежденного объекта расстояние, на которое отброшены куски металла, и размер зоны теплового воздействия при воспламенении рабочего продукта размещение примыкающих деталей и фотодокументация места повреждения. Химический состав, термообработка и механические свойства материала конструкции технология ее сооружения, сварка, термообработка и контроль качества в процессе монтажных работ. Состав, давление, температура, скорость и влажность коррозионной среды. Величина постоянных и переменных напряжений, частота их изменения, вид напряженного состояния, ориентация главных нормальных напряжений. Планируемые условия эксплуатации и отклонения от них в процессе работы и непосредственно перед повреждением объекта, акты освидетельствований и сведения о ремонтах. При этом учитывается информация монтажной и технологической документации, обслуживающего объект персонала и информация о прежних подобных повреждениях. В процессе анализа проводят контрольную проверку каждого наблюдения относительно истории повреждения конструкции и отмечают все противоречия, так как часто именно они позволяют найти главную причину повреждения. Значи-  [c.217]


В этом разделе мы обсудим вопрос о том, какими общими свойствами должен обладать оператор измерения М. Прежде всего отметим, что в уравнении (145) оператор М 1/) входит в виде слагаемого наряду с кинетической энергией и полной энергией Нсо. Поэтому оператор М должен иметь размерность энергии, т.е. отношения Й//о, где о — некоторое характерное время измерения. Таким образом, вмешательство оператора М ф) в эволюцию квантовой частицы в общем случае должно возмущать не только волновую функцию, но и энергию этой частицы. Другими словами, измерение некоторого квантового объекта может сопровождаться обменом энергии с внешним окружением. Однако величина этой энергии может быть исчезающе мала, если либо измерение производится очень долго, либо коллапсирование происходит на столь широкие волновые пакеты, что соответствующим изменением энергии можно пренебречь. Например, при измерении физической величины I/, оператор которой коммутирует с гамильтонианом частицы, возмущения энергии не происходит и соответствующее измерение может происходить без разрушения стационарного состояния.  [c.156]

Существенным шагом в развитии критериев хрупкого разрушения являются исследования Л. А. Копельмана [101], который записывает критерий хрупкого разрушения для случая объемного напряженного состояния (ОНС) в виде двух условий  [c.58]

Рассматривая лучи, отвечающие различным типам напряженного состояния материала, можем приближенно установить вид разрушения и выбрать, таким образом, подходящую теорию прочности. Например, луч 1 на диаграмме пересекает раньше всего линию сопротивления отрыву. Следовательно, материал разрушится путем опрыва без предшествующей пластической деформациии. Луч 2 пересекает сначала линию текучести, а затем линию сопротивления отрыву. Следовательно, при данном напряженном состоянии разрушение произойдет путем отрыва, но с предшествующей пластической деформацией. Для напряженного состояния, соответствующего лучу 3, после пластической деформации разрушение произойдет путем среза. В тех случаях, когда лучи, изображающие то или иное сложное напряженное состояние, пересекают прежде всего линию сопротивления отрыву, расчет прочности следует производить  [c.193]

Таким образом, диаграммы механического состояния с известным приближением отражают зависимость формы разрушения от вида напряженного состояния. Приближенность построения заключается в том, что предел текучести и сопротивление разрушению непостоянны. Лучи, изображаюш,ие напряженные состояния, прямы лишь до достижения предела текучести.  [c.194]

Напряжения в металле могут быть остаточными после механической или термической обработки или приложенными извне. Трещины могут быть межкристаллитными или транскристаллит-ными, в зависимости от свойств металла и коррозионной среды. Разрушения этого вида в корне отличаются от межкристаллитной коррозии, которая не зависит от того, находится металл в напряженном состоянии или нет.  [c.29]

Склонность меди к растворению кислорода при нагревании на воздухе приводит (при последующем нагревании в атмосфере водорода) к разрушению металла по границам зерен вследствие образования водяного пара. К этому типу разрушения особенно чувствительна литая черновая медь, содержащая ujO в свободном состоянии. Отмечены случаи разрушения меди в среде водорода уже при 400 °С. Так называемая бескислородная медь нечувствительна к данному типу разрушения, однако даже после непродолжительного нагревания на воздухе или в кислороде приобретает склонность к этому виду разрушения.  [c.203]

При исследовании иоиросон прочности и сложном напряженном состоянии существенное значение имеет вид напряженного состояния. Большинство материалов по-разному разрушается н зависимости от того, являются ли напряжения растягивающими или сжимающими. Как показывает опыт, все материалы без исключения способны воспринимать весьма большие напряжения в условиях всестороннего сжатия, в то время как при одноосном растяжении разрушение наступает при сравнительно низких напряжениях. Имеются напряженные состояния, при которых разрушение происходит хрупко, без образования пластических деформаций, а есть такие, при которых тот же материал способен пластически деформироваться,  [c.245]

Одна из аиболее эффективных лабораторных проб — стандартная проба СЭВ-19ХТ по ГОСТ 26388—84 (рис. 13.34). Испытанию подвергают набор из трех плоских прямоугольных стыковых образцов /, различающихся длиной свариваемых элементов 2Ь = 100, 2Ьг = 150, 2Ьз = 300 мм). Перед сваркой образцы закрепляют в жестком зажимном приспособлении 2. Весь набор образцов сваривают одновременно за один проход на стандартных режимах для каждого способа сварки и толщины стали. После сварки образцы выдерживают в закрепленном состоянии в течение 20 ч. В результате усадки сварного шва в соединениях развиваются поперечные сварочные напряжения, обратно пропорциональные длине образцов. Ориентировочно их значение может быть определено по формуле (13.12). При длительном действии этих напряжений возможно замедленное разрушение металла ОШЗ, которое проявляется в виде образова-  [c.539]

При наличии трещины поля напряжений у ее края очень сильно локализованы и быстро затухают, так что если зона пластической деформации у края треищны по сравнению с ее длиной и размером образца мала, то при математический трактовке процесса размером этой зоны можно пренебречь и рассматривать поведение тела, как в упругой задаче. Это позволило моделировать различные виды разрушения материала путем растяжения специального образца с предварительно созданной трещиной в условиях, обеспечивающих автомодельность напряженно-деформированного состояния локальных объемов трещины, т.е. когда напряженно-деформированное состояние у края трещины определяется ИЛИ коэффициентом интенсивности нанряжений К, (нормальный отрыв), или Кц (поперечный сдвиг), или К,ц (антиплоская деформация). Когда напряжения и деформации на фронте трещины достигают критической величины, возникает нестабильность разрушения. Это критическое состояние по  [c.290]

Избирательный перенос - вид контактного взаимодействия при трении, который возникает в результате протекания на поверхности комплекса механо-физико-химических процессов, приводящих к образованию систем автокомпенсации износа и снижения трения. Наиболее характерной является система образования защитной поверхностной пленки, в которой благодаря определенному структурному состоянию реализуется механизм деформации при трении, протекающий без накопления обусловливающих разрушение материала дефектов структуры  [c.149]

Второе дополнительное условие состоит в требовании равновесности процесса роста трещины. Иными словами, весь поток энерт ии, возникающий в связи с возмо г ным ириращением длины трещины, целиком затрачивается только на разрушение. При этом трепщна при медленном возрастании или падении внешней нагрузки будет медленно и устойчиво распространяться вдоль искомой траектории. Важно, чтобы внешняя нагрузка соответствующим образом уменьшалась в области падающей зависимости внешнего усилия от длины трещины в предельном состоянии равновесия. Итак, это дополнительное условие может быть представлено в виде d//dl = 0. Вместе с тем в изопериметрической  [c.197]


Учебное пособие написано в рамках чтения лекций в МГТУ им. Н.Э. Баумана по курсу Конструкционная прочность машиностроительных материалов на факультете Машиностроительные технологии (кафедра Материаловедение ) и предназначено для студентов, обучающихся на материаловедов и машиностроителей. Среди механических свойств конструкционных металлических материалов усталостные характеристики занимают очень важное место. Известно, что долговечность и надежность машин во многом определяется их сопротивлением усталости, так как в подавляющем большинстве случаев для деталей машин основным видом нагружения являются динамические, повторные и знакопеременные на1 рузки, а основной вид разрушения - усталостный. В последние годы на стыке материаловедения, физики и механики разрушения сделаны большие успехи в области изучения физической природы и микромеханизмов зарождения усталостных трещин, а также закономерностей их распространения. Сложность оценки циклической прочности конструкционных материалов связана с тем, что на усталостное разрушение оказывают влияние различные факторы (структура, состояние поверхностного слоя, температура и среда испытания, частота нагружения, концентрация напряжений, асимметрия цикла, масштабный фактор и ряд других). Все это сильно затрудняет создание общей теории усталостного разрушения металлических материалов. Однако в общем случае процесс устаттости связан с постепенным накоплением и взаимодействием дефектов кри-сталтгической решетки (вакансий, междоузельных атомов, дислокаций и дискли-наций, двойников, 1 раниц блоков и зерен и т.п.) и, как следствие этого, с развитием усталостных повреждений в виде образования и распространения микро - и макроскопических трещин. Поэтому явлению усталостного разрушения присуща периодичность и стадийность процесса, характеризующаяся вполне определенными структурными и фазовыми изменениями. Такой анализ накопления струк-туршз1х повреждений позволяет отвлечься от перечисленных выше факторов. В учебном пособии кратко на современном уровне рассмотрены основные аспекты и характеристики усталостного разрушения металлических материалов.  [c.4]


Смотреть страницы где упоминается термин Разрушения виды состоянии : [c.164]    [c.237]    [c.105]    [c.142]    [c.21]    [c.76]    [c.17]    [c.30]    [c.138]    [c.225]    [c.229]    [c.278]    [c.352]    [c.370]   
Повреждение материалов в конструкциях (1984) -- [ c.130 , c.151 ]



ПОИСК



Влияние вида напряженного состояния на сопротивление пластической деформации и разрушение в условиях ползучести

Разрушение, виды

Состояние видов

Состояние разрушения



© 2025 Mash-xxl.info Реклама на сайте