Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Приборы — Понятие

Показания приборов всегда несколько отличаются от действительных значений измеряемых величин, т. е. искомая величина может быть замерена с определенной точностью. Для оценки точности показаний приборов вводятся понятия абсолютной и относительной погрешности.  [c.230]

Значение измеряемой величины, соответствующее всей шкале прибора, называется пределом измерения по шкале прибора. Это понятие не следует смешивать с пределами измерения прибора.  [c.35]


Поэтому в теории точности приборов введено понятие действующей погрешности [6], которая наряду с погрешностью раз-, меров и отклонений расположения поверхностей включает в себя также отклонения формы и шероховатость поверхностей.  [c.180]

Мы описали шум прибора, используя понятие опорной температуры Го, а не действительную температуру Г. Причина такого подхода в том, что температуру Г иногда бывает трудно определить. Например, в вакуумном диоде с током, ограниченным пространственным зарядом, катод имеет температуру Тс, а анод — температуру Та. Какую из этих температур следует считать опорной, неизвестно. Поэтому лучше использовать фиксированную опорную температуру, в качестве которой обычно берется стандартная комнатная температура Го= = 290°К. Только в тех случаях, когда можно ожидать, что исследуемый прибор имеет тепловой шум, рекомендуется в качестве опорной использовать температуру прибора.  [c.36]

Конечно, очень трудно определить скорость ветра без помощи специальных для того приборов, но понятия слабый, умеренный, сильный — более или менее установившиеся для того же, чтобы более наглядно характеризовать эти понятия, приведем указания для определения скорости ветра на-глаз.  [c.59]

При проектировании приборов пользуются понятиями теоретического (идеального) и действительного (реального) механизмов.  [c.44]

ГЛАВА ПЯТАЯ ЭЛЕКТРИЧЕСКИЕ ПРИБОРЫ 25. Понятие об электрических авиационных приборах  [c.178]

Понятие о размерных цепях. Для нормальной работы механизма машины, прибора важно точно исполнить установленное чертежом взаимное расположение деталей.  [c.99]

Это соотношение показывает, что абсолютную температуру можно интерпретировать как статистическое свойство, определяемое поведением большого числа молекул. Сама по себе концепция температуры теряет свое значение, когда число молекул мало. Например, вполне разумно измерять температуру газа в объеме 1 фут (28,3 л) при обычном давлении, когда число молекул в этом объеме порядка 10 или больше. Однако если в сосуде создать вакуум до такой степени, чтобы в нем было только 10 молекул, то понятие температура газа потеряет смысл, поскольку число молекул недостаточно для обеспечения статистическою распределения энергии. Любой прибор, измеряющий температуру, введенный в сосуд, покажет температуру, определяемую скоростями энергетического обмена (главным образом путем радиации) между измеряемым прибором и стенками сосуда. Однако указанную этим прибором температуру нельзя рассматривать как температуру 10 молекул газа в сосуде. Во всех последующих уравнениях термодинамические свойства будут выражены в значениях абсолютной температуры Т вместо л.  [c.107]


Примерно в то же время французский ученый Амонтон разработал газовый термометр постоянного объема. В качестве термометрического вещества он использовал воздух и нашел, что отношение самого большого летнего тепла к самому большому зимнему холоду в Париже составляет приблизительно б 5. Затем он пошел далее и заключил, что самая низкая возможная температура должна соответствовать нулевому давлению газа. Это можно считать первым шагом на пути изучения понятия температуры. Согласно Амонтону, мы можем определять температуру как величину, просто пропорциональную давлению газа, и таким образом для создания шкалы необходима лишь одна фиксированная точка. Несмотря на более раннюю работу Бойля и Мариотта, эта идея не была поддержана, по-видимому, по весьма веской причине — газовый термометр представлял собой слишком сложный прибор. Тогда не сумели понять, что созданная таким образом шкала содержит гораздо больший физический смысл, чем шкала Фаренгейта.  [c.32]

Понятие механизм является более широким, чем понятие машина , прибор или приспособление . Всякое из названных устройств является одновременно механизмом, но не наоборот. Таким образом, можно говорить о механизмах машин, приборов и приспособлений.  [c.9]

Потребность написания данной книги возникает из необходимости привести в соответствие с программой курса совокупность сведений из различных общеинженерных курсов и изложить ее по единой методике с учетом математической подготовки студентов. Изложению материала в учебном пособии предшествует краткий обзор механизмов, применяемых в приборах и периферийных устройствах ЭВМ. В дополнение материала программы в учебном пособии изложены те разделы теоретической механики, которые необходимы для изложения материала программы, но недостаточно освещаются в курсе физики. В книгу также введена глава, в которой излагаются понятия о надежности.  [c.3]

Разрешающая сила микроскопа. Явление дифракции на апертуре объектива ограничивает возможности микроскопа. Как и в других оптических приборах, для количественной характеристики способности микроскопа вводится понятие его разрешающей силы.  [c.199]

Существует ряд приборов и устройств, выполненных по методу Френеля, позволяющих наблюдать возникающую интерференцию. Здесь рассмотрены лишь три экспериментальных установки. Выбор именно этих построений связан с тем, что их можно демонстрировать в большой аудитории и последовательно вводить некоторые новые понятия, необходимые для количественного описания интерференции от протя кенных источников света.  [c.194]

Введенное понятие дисперсии не позволяет полностью охарактеризовать способность спектрального прибора разлагать  [c.318]

Однако вернемся к исследованию свойств спектральных приборов, при котором широко используется критерий Рэлея, и введем основное понятие разрешающей силы диспергирующего элемента.  [c.319]

Поток есть основное понятие, необходимое для оценки количества энергии, проникающей в наши приборы. Знание потока существенно необходимо при расчете многих оптических устройств. Такой приемник, как, например, фотоэлемент, непосредственно реагирует на поток (ем. 95).  [c.44]

Совокупность фотометрических понятий и величин, установленных в качестве единиц для соответствующих измерений, даст возможность охарактеризовать действие света на наши приборы и установки.  [c.55]

Отсюда ясно, что для тел, характер излучения которых сильно отличается от излучения черного тела (например, для тела с ясно выраженными областями селективного излучения), понятие цветовой температуры не имеет смысла, ибо цвет таких тел можно только очень грубо воспроизвести при помощи черного тела. В тех случаях, когда определение цветовой температуры возможно (так называемые серые тела , например, уголь, окислы, некоторые металлы), для ее отыскания необходимо произвести исследование распределения энергии в спектре при помощи соответствующих спектральных приборов. Рис. 37.2 воспроизводит результаты такого исследования для Солнца одновременно на нем нанесены кривые распределения для черного тела при температурах 6000 и 6500 К. Рис. 37.2 показывает, что отождествление Солнца с черным телом  [c.703]

Основные понятия. В современной технике все большее распространение получают машины, аппараты и приборы, в которых совершение механической работы связано с преобразованием потенциальной энергии (энергии давления) газа или пара в кинетическую энергию потока (струи) рабочего тела. Изучение рабочих процессов устройств, основанных на использовании кинетической энергии потока, приобретает все большее значение, особенно в связи с развитием современной теплоэнергетики (паровые и газовые турбины), ракетной техники и реактивных двигателей, химической промышленности (инжекторы, форсунки, горелки н пр.) и холодильной техники.  [c.6]


Ответ Бора состоит в том, что квантовая механика справедлива лишь для микроскопических систем, масштабы которых существенно меньше масштабов наблюдателя и макроскопических приборов, используемых в измерении. Макроскопический мир описывается с помощью классических понятий. Переход oi квантовой микроскопической системы к классической макроскопической системе не описывается уравнением Шредингера, а осуществляется редукцией состояния.  [c.407]

Одна из ведущих инженерных наук, роль которой трудно переоценить в формировании квалифицированного инженера в области строительного дела, машиностроения, приборостроения, авиастроения, кораблестроения и т. п., —сопротивление материалов — призвана дать ответ на вопрос о степени надежности деталей машин, узлов машин, элементов зданий, элементов приборов, летательных аппаратов, судов и т. п. Понятие надежность можно определить как способность элемента конструкции или всей кон-  [c.9]

Поясним это обстоятельство подробнее, так как с ним тесно связан вызывающий много споров вопрос об определении понятия элементарности частицы. В макроскопическом мире мы просто видим, что дом состоит из кирпичей. Структуру и составные части микрообъектов непосредственно наблюдать нельзя. Тем не менее мы считаем, что в состав атомов входят электроны, а в состав ядер — протоны и нейтроны, потому что рсе эти частицы выбиваются из атомов и ядер при бомбардировке последних пучками -квантов и других частиц. Но если при столкновении может происходить не только развал сложной частицы на составные части, но и рождение, а также поглощение частиц, то уже непонятно, как отличить частицу, входившую в состав сложной, от вновь родившейся, поскольку прибору все равно, какую частицу он регистрирует.  [c.275]

Основной характеристикой звёзд является их блеск и яркость которые связаны непосредственно с ощущением глаза при наблюдениях. Блеск можно измерять с помощью специальных приборов, называемых фотометрами. С давних времён интенсивность блеска звёзд положена в основу понятия звёздной величины .  [c.274]

Рассмотрим твердотельные квантовые приборы, принцип действия которых основан на переходах квантовых систем с одного энергетического уровня на другой с испусканием или поглощением фотона — кванта света. Поэтому, во-первых, поясним понятие энергетического уровня квантовой системы прежде, чем перейти к понятиям набора энергетических уровней и переходов между ними, и, во-вторых, выясним природу этих уровней.  [c.57]

Приведенная относительная погрешность. Величина погрешности положения или перемещения механизма не является достаточной характеристикой его точности. Ошибки положения или перемещения механизма являются размерными величинами и, следовательно, относятся к абсолютным ошибкам. Однако, величины абсолютных ошибок не являются достаточным критерием для суждения о точности разных по конструкции и размерам механизмов. Поэтому для характеристики точности механизма прибегают к понятию приведенной относительной погрешности, под которой понимают отношение практически предельной ошибки положения механизма к величине полного хода (или полного перемещения) ведомого звена. Механизмы и приборы делятся на классы точности (см. 163) в зависимости от величины приведенной относительной ошибки.  [c.120]

Он характеризует смазочное вещество. За единицу абсолютной вязкости принимается пуаз. Один пуаз равен 0,0102 кг сек)1м . Для технических испытаний смазочных масел удобнее пользоваться понятием относительной вязкости. Последняя определяется как отношение времени истечения 0,2 л испытуемого вещества при 50 С и такого же объема воды при 20 С. В СССР относительная вязкость измеряется в градусах Энглера на приборах, называемых вис-  [c.304]

Понятие качества-изделий, с одной стороны, находится в непрерывном развитии, а с другой, настолько обширно, что не представляется возможным рекомендовать даже для частичной его оценки приборы, использующие какой-либо один вид проникающего излучения или один физический метод контроля.  [c.8]

Общие сведения. Определение понятия сплав высокого сопротивления II области применения этих сплавов уже были указаны выше (стр. с6). При использовании этих сплавов для электроизмерительных приборов и образцовых резисторов, помимо высокого удельного сопротивления р, требуются высокая стабильность р во времени, малый температурный коэффициент удельного сопротивления ар и малый коэффициент термо-ЭДС в паре данного сплава с медью. Сплавы для электронагревательных элементов должны длительно работать на воздухе при высоких температурах (иногда до 1000 °С и даже выше). Кроме того, во многих случаях требуется технологичность сплавов — возможность изготовления из них гибкой проволоки, иногда весьма тонкой (диаметром порядка сотых долей миллиметра). Наконец, желательно, чтобы сплавы, используемые для приборов, производимых в больших количествах, — реостатов, электроплиток, электрических чайников, паяльников, — были дешевыми и по возможности не содержали дефицитных компонентов.  [c.219]

В решениях XXV съезда Коммунистической партии Советского Союза большое внимание уделяется вопросу повышения качества всех видов продукции. В последнее время в области машиностроения непрерывно повышаются требования к качеству и надежности летательных аппаратов, изделий ядерной энергетики, электронных полупроводниковых приборов, топливных и газовых магистралей, вакуумной и космической техники. Все это вызывает острую необходимость в создании и освоении объективных, высокочувствительных методов и средств контроля, в частности, контроля герметичности конструкций. Эта проблема может быть решена путем разработки специальных методов контроля и аппаратуры на основе использования последних достижений в области современной физики, химии и электроники. Одним из видов контроля является неразрушающий контроль течеисканием (ГОСТ 18353—73), основанный на регистрации индикаторных жидкостей и газов, проникающих в сквозные дефекты контролируемого объекта. При течеискании, в основном, выявляют течи и определяют их места расположения. Более широким понятием является контроль герметичности, который предусматривает и количественную оценку герметичности конструкций.  [c.3]


Отличительным признаком измерительной головки является увеличивающее устройство, преобразующее малое перемещение измерительного штока 9, вызываемое отклонением Ад детали, в значительно большее перемещение указателя 8, отсчитываемое по шкале 7. Шкалы этих приборов, в отличие от приборов для абсолютных измерений, не являются штриховыми мерами. В связи с этим для этих приборов вводится понятие цена деления шкалы, определение которого дано выше. Приборы для относительных измерений получили широкое распространение после практического освоения и распространения плоскопараллельных концевых мер длины и интерференционных методов их измерений. Эти приборы значительно повысили точность измерений по сравнению с инструментами и приборами для абсолютных измерений. С помощью концевых мер длины практически можно составлять блоки любых применяемых в машиностроении размеров через 0,001 мм. Следовательно, можно подобрать блок такого размера А, чтобы неизвестное отклонение Ад сделать весьма малым. Это позволяет использовать прибор с большим увеличением, тем самым повышая точность измерения. Размеры концевых мер длины и блоки из них с помощью интерференционных методов измерений можно аттестовать с точностью до сотых долей микрона.  [c.348]

Рассмотрим основные понятия и определения. Твердые тела, входящие в состав механизма и обладающие относительной подвижностью, называют звеньями механизмд. Звенья могут состоять и.ч одной или нескольких жестко связанных между собой частей, н,1зываемых деталями. На рис, 1 изображена схема передаточного механизма измерительного прибора. Звено 2 механизма (шатун) имеет приспособление, позволяющее изменением длины этого звена установить стрелку прибора по нулевой отметке шкалы 4. На рис. 2 показано конструктивное оформление звена 2 (см. рис. 1) оно состоит из двух стержней, двух цилиндрических втулок, соединительной муфты и двух гаек. При движении шатуна указанные детали перемещаются как единое целое, и следовательно, образуют одно звено механизма. Каждую деталь или группу деталей, образующих неизменяемую систему, называют подвижным звеном, а неподвижные детали механизма—с/пой/сой. Все элементы, образующие стойку, на схеме механизма отмечены штриховкой. Места соединения (соприкосновения) звеньев друг с другом являются их геометрическими элементами. Шатун (см. рис. I) имеет два таких элемента, представляющих собой цилиндрические поверхности. Одним геометрическим элементом шатун соединен с кривошипом (звеном <3), а вторым — с ползуном (звеном /).  [c.9]

Следует различать два понятия погрешность измерительного прибора и погрешность результата измерения, осуществляемого с помощью этого прибора. Погреншостъ измерительного прибора может быть вызвана несовершенством его конструкции, неточностью изгoтo злeния и оборки, а также его износом в процессе эксплуатации. Погрешность результата измерения является суммарной. Она может состоять из погрешностей применяемых средств измерения  [c.95]

Взаимозаменяемость лежит в основе принципов и форм организации современного производства, на ее основе осугцествля-ется автоматизация и механизация производственных процессов. Следовательно, это комплексное понятие, включающее не только вопросы собираемости деталей и сборочных единиц, но и технические и экономические вопросы проектирования, изготовления II экспуатации машин и приборов.  [c.90]

Нами была проанализирована разрешающая сила спектральных приборов, предназначенных для раздельного наблюдения двух близких по длине спектральных линий. Для количественной характеристики в данном случае было введено понятие разрешаюихей силы, вернее хроматической разрешающей силы, равной Х/бХ.  [c.198]

Динамика твердого тела изучается на основе общих теорем об изменении кинетической энергии, кинетического момента и количества движения, а также с помощью основных понятий геометрии масс. Показывается, что аппарат динамики системы материальных точек применим для описания движения твердого тела и систем твердых тел. Проясняется вычислительная экономность использования уравнений Эйлера. Традиционно анализируются случаи Эйлера-Пуансо, Лагранжа-Пуассона, Ковгияевской [24]. В качест)зе примера методики по.чучения частных случаев интегрируемости приводятся случаи Гесса и Бобылева-Стеклова [6]. С целью демонстрации приложения развитых методов к практике даются основы элементарной теории гироскопов [14, 41], достаточные для качественного анализа действия гироскопических приборов.  [c.12]

Понятие 165 Преобразователь изображения электронно-оптический 151 Приборы газонаполненные — Маркировка 139 --газоразрядный см. Прибор ионний электровакуумный --ионный электровакуумный 151  [c.761]

Глава 7 (Гармонический осциллятор). Очень важны линейные задачи и, в частности, задача о вынужденных колебаниях гармонического осциллятора. Даже в объеме минимальной программы необходимо разобрать первый из трех примеров нелинейных задач, потому что он дает студентам понятие о том, как они могут оценить ошибки, обусловленные линеаризацией задачи о колебаниях маятника. Понятие о сдвиге фаз при вынужденных колебаниях гармонического осциллятора не сразу воспринимается большинством студеп-тов. Здесь помогает хорошая лекционная демонстрация. Электрические аналогии плохо воспринимаются на этой стадии преподавания, и их, может быть, следовало бы оставить для лабораторных работ. В демонстрации входят гармонические колебания камертонов (следует усилить их, чтобы звук был хорошо слышен, а также показать форму волны на экране) вынужденные колебания груза на пружине задаваемые генератором сигналов вынужденные электрические колебания контура, состоящего из сопротивления, индуктивности и емкости прибор Прингсхейма колебания связанных осцилляторов.  [c.15]

Мы пришли бы к двум различным формулам, отличающимся на величину второго порядка относительно v . Так как даже для движения Земли по ее орбите vie не превосходит 10 , то, следовательно, различие в обеих формулах составляет лишь 10 . Для большинства же реализуемых на опыте случаев различие еще меньше. Его нельзя констатировать непосредственным наблюдением над величиной допплеровского смещения. Однако удалось, как известно, осуществить и другие оптические опыты (например, опыт Майкельсона, см. 130), которые были достаточно точны для того, чтобы констатировать указанные малые различия, если бы они существовали. Этими опытами было показано, что малое различие, ожидаемое в рамках представления о распространении световых волн в неподвижном эфире, не имеет места. Все без исключения процессы протекают таким образом, что играет роль только относительное движение источников и приборов по отношению друг к другу, и понятие абсолютного движения в вакууме не имеет смысла (принцип относительности, см. гл. XXII). Поэтому и формулы, описывающие явление Допплера, не. должны отличаться друг от друга для двух разобранных выше случаев, потому что иначе мы имели бы и в этом явлении принципиальную возможность констатировать абсолютное движение системы в вакууме, что противоречит принципу относительности. И действительно, если при выводе формул для расчета явления Допплера принять во внимание основные постулаты и следствия теории относительности, то мы получим для обоих случаев (движение источника и движение прибора) один и тот же результат, а именно  [c.437]


Чрезвычайно высокая теилопроводность, обнаруженная в экспериментах 1935 и 1936 гг., являясь лишь частью особых свойств Не И, послужила толчком к исследованию явлений переноса. Спустя год, Аллен, Пайерлс и Аддин [161 в Кембридже установили важный дополнительный факт, оставшийся незамеченным в первых экспериментах. Авторы измеряли теплопроводность жидкого Не II в капилляре. Тенлоироводность оказалась не только большой по абсолютной величине, но и, кроме того, зависящей от градиента температуры. Немного позже сами авторы поставили свои результаты под сомнение, считая, что они были подвержены влиянию более сложного эффекта. Однако на основании более поздней работы было установлено, что величина теплового потока зависит не только от градиента температуры, но также и от размеров прибора, на котором проводятся измерения. Таким образом, понятие теплопроводности в обычном смысле как отношения плотности теплового потока к градиенту температуры в Не II теряет смысл. Для капилляра заданного диаметра при постоянном градиенте температуры теплопроводность гелия при охлаждении ниже Х-точки резко возрастает, достигая максимума при 2 К, и затем снова падает при дальнейшем понижении те.миературы (фиг. 6).  [c.790]

Осгавление Бором открытым вопроса о границе между микроскопической квантовой системой и макроскопическим прибором и наблюдателем не обесценивает его утверждения о принципиальном различии между теорией квантовых объектов, описываемых уравнением Шредингера, и классических объектов, к которым уравнение Шредингера неприменимо. Здесь необходимо подчеркнуть, что понятие квантового и классического объекга не следует связывать с геометрическими размерами. В утверждении Бора эта связь отражает лишь исторические обстоятельства возникновения квантовой механики при анализе явлений в микроскопических физических системах. В настоящее время известно большое число квантовых явлений макроскопических масштабов и даже вся Вселенная в определенном смысле представляется как единый квантовый объект. Следовательно, граница между квантовым и классическим объектами не определяется их геометрическими размерами.  [c.408]

При выборе и обосновании математической модели проектируемой конструкции очень часто элементы, из которых она состоит, например упругие элементы приборов, элементы корпуса ракеты, самолета или корабля и т.д., расматривают как стержни, пластины и оболочки. Эти три элемента имеют самое широкое распространение в инженерной практике при проектировании новой техники практически во всех отраслях промышленности. К тому же они являются наиболее простыми и наглядными для иллюстрации понятий и методов новой для студентов дисциплины, относящейся к механике сплошной среды.  [c.13]

ГОСТ 7664-61 устанавливает три изучаемые в курсах физики системы механических единиц измерения, различающиеся основными единицами МКС с единицами м, кг, сек МКГСС с единицами м, кгс (кГ), сек и СГС с единицами см, г, сек. Первая из них вошла как часть в СИ и рекомендуется как предпочтительная. Эта система последовательно используется в настоящей книге. В связи с этим необходимо обратить внимание на измерение количества вещества, часто встречающееся в расчетах. Как известно из курса физики, количество вещества в теле измеряется его массой,, (в состоянии покоя) и при пользовании системой МКС выражается в кг. Прибором для определения массы тела служат рычажные весы, исключающие влияние географической широты и высоты места взвешивания, что и соответствует понятию массы. Отсюда такие величины, как количество пара в котле, металла в каком-либо агрегате, производительность котла, вентилятора, расход топлива, пара — все эти величины измеряются массой тел, участвующих в изучаемом явлении, и выражаются в кг. Другое понятие вес , которым широко и неточно пользуются в технических расчетах для измерения количества вещества, здесь будет применяться только для определения силы, действующей на опору (площадку) в силу этого понятие еес лучше заменить более правильным — сила тяжести в системе МКС последняя, как известно, измеряется в ньютонах и вычисляется как произведение массы на ускорение силы тяжести в данном месте (второй закон Ньютона) или определяется при помощи пружинных весов, что менее точно. Единица силы системы МКГСС — кгс (кГ) здесь будет использоваться только в допускаемых ГОСТ внесистемных единицах.  [c.19]

Впервые Уатту по-настоящему повезло. Тогда в университете Глазго работали многие крупные ученые, среди которых был, в частности, физик и химик Джозеф Блек, в те годы занимавшийся изучением свойств водяного пара. Он открыл у воды так называемую скрытую теплоту парообразования — понятие, которое Уатт впоследствии использовал при работе над паровой машиной. В университете хорошо приняли молодого механика, высоко оценив его умение изготовлять самые сложные приборы вскоре оценили и его образованность, и незаурядную одаренность. Многие студенты приходили в мастерскую, зная, что молодой механик может помочь им в их затруднениях при изучении наук.  [c.79]

Термин. гироскоп (.жироскоп ) был, повидимому, придуман Фуко в связи с указанными опытами, как комбинация двух понятий . вращение" (т. е. Земли) и. смотреть. Этот термин стал употребляться для всех приборов, в которых играет главную роль вращение махового колеса. Обозначение. гиростат впервые введено Кельвином для системы со скрытым маховиком, но стало затем употребляться в том же расширенном смысле, как и гироскоп.  [c.141]


Смотреть страницы где упоминается термин Приборы — Понятие : [c.553]    [c.375]    [c.194]    [c.209]    [c.464]   
Вибрации в технике Справочник Том 4 (1981) -- [ c.441 ]



ПОИСК



Надежность комплекса прибор оператора — Понятие

Надежность комплекса прибор прибора — Понятие

Направляющие приборов Основные понятия

Общие понятия о дистанционных измерительных приборах

Основные понятия о монтаже контрольно-измерительных приборов и автоматики (КИПиА)

Понятия об основных элементах указателей авиационных приборов

ЭЛЕКТРИЧЕСКИЕ ПРИБОРЫ Понятие об электрических авиационных приборах



© 2025 Mash-xxl.info Реклама на сайте