Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Источники газоразрядные

Проблемы распространения лазерного излучения в атмосферном аэрозоле представляют в настоящее время чрезвычайно важный интерес в связи с широким практическим использованием лазеров и как инструментов исследований, и как элементов устройств различного назначения, работающих через атмосферу. С точки зрения распространения в атмосферном аэрозоле лазерные пучки имеют особенности, к числу которых следует отнести прежде всего обычно высокую степень пространственно-временной когерентности и поляризации излучения, а также пространственно-угловую ограниченность пучков. Эти особенности оптических пучков не являются специфическими только для лазерных источников и могут быть получены, если в этом есть потребность, для других типов источников (газоразрядных, тепловых и т. п.). Поэтому рассмотренные в этой главе вопросы рассеяния не относятся к числу специфических только для лазерного излучения. Названием главы в данном случае подчеркивается лишь совокупность рассмотренных вопросов, представляющих основной интерес при рассеянии именно лазерных пучков.  [c.208]


Более целесообразным в промышленности считается использование не солнечной энергии, а специальных высокоинтенсивных источников полихроматического света типа ламп накаливания или дуговых (газоразрядных) ламп. Эти лампы создаются  [c.116]

К первой группе относится гелий-неоновый лазер, схема которого приведена на рис. 3.6. Генерация когерентного излучения может проходить в видимой (Xj = 0,633 мкм) и в инфракрасной области (Я.2= 1,15 мкм, = 3,39 мкм). Газоразрядная трубка 1 этого лазера заполняется гелием и неоном при парциальных давлениях соответственно 133 и 13 Па. В трубке от высоковольтного источника питания 2 создается электрический разряд 3, который возбуждает атомы гелия и неона в результате электронных ударов. Излучение выходит из полупрозрачного зеркала 4. Гелий-неоновый лазер имеет сравнительно небольшую мощность, но из-за простоты устройства, надежности и стабильности излучения он получил широкое распространение.  [c.122]

Источник накачки представляет собой импульсную газоразрядную лампу, питающуюся от источника высокого постоянного напряжения через конденсатор постоянной емкости.  [c.384]

В качестве источников ультрафиолетового излучения в медицине используются газоразрядные лампы. Трубки таких ламп изготавливают из кварца, прозрачного для ультрафиолетовых лучей поэтому эти лампы называют кварцевыми лампами.  [c.279]

Очевидно, что чем длиннее цуг, испускаемый атомом, т. е. чем монохроматичнее свет, тем при большей разности хода возможна интерференция. В случае газоразрядных источников света в приборе Майкельсона удавалось наблюдать интерференцию при разности хода около полумиллиона длин волн. Опыты этого рода могут служить для характеристики процессов при излучении атома (см. 22). Обратно, располагая источником монохроматических волн, можно осуществить интерференцию при огромной разности хода и таким образом определить длину волны с очень большой точностью. Для некоторых лазерных источников света (гелий-неоновый лазер, например) ширина спектра излучения составляет 10 —10 с , что позволяет наблюдать интерференцию при разности хода в 10 —10 длин волн.  [c.143]

Длина волны этого излучения в вакууме Я,вак = 6057,8021 10" м. Для так называемого стандартного воздуха (давление 760 мм рт.,ст., температура IS" С, содержание Oj 0,03%) длина волны этой линии возд= 6056,12525 10" м. Строго определены условия возбуждения эталонного излучения, при которых должен находиться источник света газоразрядная лампа с горячим катодом, наполненная изотопом криптона Кг (чистотой более 99%) и охлаждаемая до температуры 63 К (тройная точка азота). Оговорены диаметр разрядной трубки, плотность разрядного тока и т. п. Практика показала, что относительная точность воспроизведения эталонной длины волны составляет 1 10" .  [c.144]


Кривая дисперсии и абсорбции, задаваемая в классической теории всей совокупностью свойственных данной группе атомов осцилляторов, в квантовой теории определяется всей совокупностью возможных для данного атома значений энергии Е , Е< ,. .., Ет, , Еп и т. д., которые в силу основного положения теории квантов принимают не любые мыслимые, а лишь определенные дискретные значения. Исходное состояние, в котором находятся атомы (вернее, в котором находится значительное большинство атомов), обычно является состоянием, соответствующим минимальному из возможных значений энергии атома Е- . Если через газ пропускают ток или каким-нибудь другим способом к газу непрерывно подводится энергия, то часть атомов может перейти в более высокие энергетические состояния. Так, например, свечение газоразрядных источников обусловлено атомами, возбужденными в высокие энергетические состояния покидая эти состояния, атомы и испускают свет.  [c.561]

В большинстве опытов, обсуждавшихся выше в связи с экспериментальным обоснованием теории Бора, мы имели дело именно со спонтанным испусканием света. Таково положение и во многих современных источниках — электрических дугах, пламенах, газоразрядных лампах и т. п. ). Направим свет от источника в спектральный аппарат и измерим интенсивность спектральной линии, отвечающей переходу т -> п. Из геометрических условий опыта легко рассчитать ту часть общей мощности которая попадает  [c.733]

Изложенная схема процессов сильно упрощена, и существует целый ряд факторов, в той или иной мере затрудняющих развитие генерации. 1< числу мешающих факторов относится, например, фотохимическое разложение молекул красителя при высоких значениях освещенности, нагревание раствора, приводящее к безызлучательному затуханию возбужденного электронного состояния, и многие другие. Однако все эти препятствия устраняются специальными методами ), и генерацию удается осуществить с большим числом разных красителей (их насчитывается сейчас около 100) в импульсном и непрерывном режимах, в широкой области спектра (от 350,0 до 1000,0 нм) и с применением в качестве источников возбуждающего излучения ксеноновых газоразрядных ламп и лазеров.  [c.817]

Подавляющее большинство современных. источников света основано на превращении электрической энергии в оптическое излучение. По принципу действия их можно разделить на две группы электрические лампы накаливания и лампы газового разряда (газоразрядные лампы). Это наиболее распространенные электрические источники света.  [c.147]

Инверсная заселенность создается между уровнями Е и Е2 методом оптической накачки. Важно, чтобы основная масса энергии, излучаемой источником накачки, попадала в полосы поглощения активного вещества и эффективно использовалась для создания инверсной заселенности в системе рабочих уровней. Как уже упоминалось, для накачки активного вещества применяют импульсные газоразрядные ксеноновые лампы, коэффициент полезного действия которой около 50 %  [c.286]

Схема установки в опыте Боте показана на рис. 2.4. Металлическая фольга Ф помещалась между двумя газоразрядными счетчиками i и С . Фольга освещалась пучком рентгеновских лучей в результате чего она сама становилась источником рентгеновских лучей (явление рентгеновской флуоресценции). Исходный рентгеновский пучок имел очень малую интенсивность, поэтому и количество квантов, испускаемых фольгой в единицу времени, было невелико. Попадание рентгеновского излучения в каждый из счетчиков вызывало немедленное (меньше чем через 10 с) вздрагивание нити электрометра, автоматически регистрировавшееся на движущейся ленте. Если бы излучаемая фольгой энергия распространялась равномерно во все стороны, как это следует из волновых представлений, то оба счетчика должны были бы срабатывать одновременно. Однако опыт совершенно отчетливо продемонстрировал беспорядочность показаний электрометров. -Отсюда можно было заключить, что излучение испускается фольгой не в виде волн, а в виде световых квантов, которые вылетают то в одну, то в другую сторону и регистрируются то тем, то другим счетчиком.  [c.51]


Источники света могут излучать свет непрерывно и прерывисто, в виде серии вспышек или в виде единичной вспышки высокой интенсивности, продолжительностью в несколько мкс. При непрерывном освещении дискретность изображения на пленке получается с помощью оптико-механической схемы или же явление записывается в виде фотографического следа. В качестве непрерывных источников света используются вольфрамовые лампы и ртутные дуговые источники [37]. Прерывистое освещение используется в сочетании с камерами, имеющими непрерывно движущуюся пленку. Величину экспозиции определяет интенсивность вспышки источника света. Источники, дающие единичные управляемые вспышки света, можно использовать для камер с неподвижной пленкой, картина движения получается за счет кратковременности вспышки. Для освещения высокоскоростных процессов применяются газоразрядные трубки с холодным катодом. Такая трубка может давать одиночную вспышку или несколько вспышек подряд. Трубку поджигают разрядом конденсатора высокого напряжения, получается кратковременная вспышка света высокой интенсивности. Действие газоразрядной трубки с холодным катодом основано на следующем принципе. Напряжение от конденсаторов прилагают к главным электродам, однако вспышки газа не происходит до тех пор, пока на третий (пуско-  [c.27]

Источниками ультрафиолетового излучения являются специальные газоразрядные лампы, в которых возникает электрический разряд в атмосфере паров ртути при том или ином давлении. Трубка или колба такой лампы изготавливаются из кварцевого или иного специального стекла, хорошо пропускающего ультрафиолетовые лучи. Лампы снабжаются устройствами для зажигания разряда (напряжение зажигания примерно в два раза больше напряжения при нормальной работе лампы) и другими регулирующими и защитными устройствами. Лучи от лампы проходят через светофильтр (стеклянный, пластмассовый или жидкостный), пропускающий ультрафиолетовые лучи определенного интервала длин волн, но интенсивно поглощающий видимые лучи, почему фильтрованные ультрафиолетовые лучи иногда называют черным светом. Пример состава стекла для такого фильтра 50% ЗЮа, 25% ВаО, 16% КгО, 9% N10. Для испытаний на воздействие ультрафиолетовых лучей могут быть использованы приборы люминесцентного анализа с мощными источниками ультрафиолетового излучения.  [c.195]

Плазма — это уникальное рабочее тело качественно новой энергетической техники. Она может быть и низкотемпературной (до 10 К), и высокотемпературной (более 10 К). Низкотемпературная плазма используется в магнитогидродинамических (МГД) генераторах и термоэлектронных преобразователях (ТЭП), а высокотемпературная плазма -в термоядерных энергетических установках. Плазма применяется также в лазерах в качестве активной среды (например, в газоразрядных лазерах) или источника возбуждения лазерной активной среды (электронная накачка).  [c.280]

Наличие достаточно широких полос поглощения для приема энергии от источников накачки при значительной ширине полосы используется большая часть энергии источника накачки газоразрядной лампы с немонохроматическим, широким спектром излучения.  [c.218]

Источники света по физическим принципам действия могут быть разделены на газоразрядные, тепловые, люминесцентные и лазерные.  [c.99]

В качестве счетчика целесообразно применять сцинтилляционный счетчик, обладающий высокой эффективностью счета (30-50 %). Последнее обстоятельство очень важно, так как при использовании источников малой активности применение газоразрядных счетчиков требует значительно большей постоянной времени интегрирующей цепи, что накладывает существенные ограничения на скорость движения датчика по трубе, а следовательно и на скорость проведения замеров.  [c.46]

Для исключения влияния озона и окисла азота, образующихся в результате ионизации воздуха при работе газоразрядных ламп, необходимо проветривать помещение. Равномерная интенсивность облучения испытуемых изделий достигается применением параболических зеркальных отражателей и фокусирующих устройств у источников света.  [c.513]

Исследование распределения твердого компонента по высоте и сечению камеры противоточной торможенной газовзвеси проведено с помощью р-просве 1ивания. В качестве источника излучения был применен стандартный бета-излучатель (препарат Sr ° + Y ° с максимальной энергией 2,18 Мэе). Толщина защитного свинцового контейнера 30 мм. Для увеличения чувствительности блока был применен газоразрядный счетчик с боль-96  [c.96]

Низкотемпературная плазма (температура IOOOK) находит применение в газоразрядных источниках спета и в газовых лазерах, в термоэлектронных преобразователях тепловой энергии в электрическую и Б магиитогидродннамических (МГД) генераторах.  [c.290]

Световой луч. В установках для сварки и пайки световым лучом можно использовать такие источники излучения, как солнце, угольная дуга, дуговые газоразрядные лампы и лампы накаливания. Для технологических целей наиболее перспективные и удобные излучатели — дуговые ксеноновые лампы сверхвысокого давления. Дуговая ксеноновая лампа представляет собой шаровой баллон из оптит  [c.17]

Следует заметить, что приведенные оценки (сТког = 3+30 см) хорошо согласуются с результатами эксперимента при использовании обычных источников света (например, газоразрядной плазмой низкого давления), но не лазеров. Эффект генерации в лазере связан с выкужденкым излучением, а не со случайными (спонтанными) переходами, которые рассматрипа.т1ись при построении тех или иных статистических схем. Для лазера T or значительно больше, чем для обычных источников света. Это демонстрируется опытом с неон-гелиевым лазером, в котором интерференция наблюдается при разности хода в несколько десятков метров (см. 5.6).  [c.189]


Для того, чтобы сравнить оценку Lkoi- по формуле (5. 54) с дан ными опыта, надо выбрать определенный источник света. Пуегь интерферометр освещается излучением газоразрядной плазмы низкого давления, когда столкновениями можно пренебречь, а основной причиной уширения спектральной линии служ1гг хаотическое тепловое движение излучающих атомов. Механизм этого доплеровского уширения рассмотрен в гл. 7, а сейчас мы ограничимся некоторыми простыми оценками.  [c.232]

В эксперименте интерферометр освещался светом неон-гелиевого лазера, излучающего одну частоту. Это позволило удалить подвижное зеркало М2 на несколько метров и продемонстрировать возможность наблюдения интерференции при столь большой разности хода, так как длина когерентности для лазерного излучения значительно больше Lkq,- 3 30 см, характерной для обычных источников света. Но очевидно, что если зеркало М2 будет передвигаться на расстояние, меньшее 1-ког ( о близко к нулю — световые пути внутри интерферометра примерно равны, Д/ изменяется в пределах нескольких сантиметров), то анало гичная интерференционная картина будет наблюдаться при освещении интерферометра светом обычного (нелазерного) источника, например спектральной линией, излучаемой газоразрядной плазмой, с шириной й/.дои В этом убеждают нас, в частности, классические опыты Майкельсона, который измерял видимость V интерференционных колец при постепенном увеличении разности хода, создаваемой перемещением зеркала М2. Но если при остановках зеркала М наблюдалась стационарная интерференционная картина, то при его движении в указанных пределах неизбежно должен возникать плавный переход от одной стационарной картины к другой, т.е. ее изменение во времени, и появится бегущая интерференционная картина.  [c.396]

Наибольшие значения разности хода имеют место при голографировании трехмерных объектов, когда Ь практически совпадает с размерами объекта. Если, следовательно, последние составляют несколько десятков см, то Av не может превышать 0,01 см . Для сравнения укажем, что ширины спектральных линий в газоразрядных источниках света, как правило, находятся в пределах 0,1 — 1 см , и поэтому их применение в голографии предполагает дополнительную монохроматпзацию с помощью спектральных приборов с высокой разрешающей силой типа интерферометра Фабри —Перо (см. 30, 50).  [c.260]

До сих пор мы не обсуждали квантовую интерпретацию закономерностей, касающихся интенсивностей спектральных линий. Совпадение частот некоторых линий испускания и поглощения имеет в квантовой теории простое объяснение — такие линии приписываются переходам между одной и той же парой уровней. Однако вопрос о том, существует ли какая-либо связь между величиной коэффициента поглощения и интенсивностью линии испускания той же частоты, не находил ответа. Опыт показывает, далее, что интенсивности линий в спектре излучения одного и того же атома могут отличаться в десятки и сотни раз, причем в разных источниках по-разному. Например, в спектре свечения натриевой газоразрядной лампы, кроме желтых 1)-линий (X = 589,0 и 589,6 нм), присутствует больщое число других линий, тогда как в пламени газовой горелки возбуждаются почти исключительно Л-линии. И наоборот, существуют такие линии, для которых отнощение их интенсивностей практически одинаково во всех источниках света.  [c.730]

Значительно большие возможности повышения коэффициента полезного действия дают газоразрядные источники света. Например, ртутные лампы высокого давления имеют в 3—4 раза более высокую экономичность, чем лампы накаливания, и более длительный срок службы. Коэффициент полезного действия натриевого разряда низкого давления достигает при определенных условиях высоких значений, составляющих 60—70 % подводимой электрической мощности. Однако, несмотря на значительно более высокий коэффициент полезного действия, эти лампы обладают существенным недостатком, связагг-ным с линейчатым характером спектра излучения, сильно искажающим цветопередачу.  [c.154]

Новый этап в развитии газоразрядных источников света связан с созданием люминесцентных ламп. Применение люминофоров, преобразующих ультрафиолетовое излучение ртутного разряда низкого давления в видимое излучение, позволило впервые создать газоразрядные источники света, дающие излучение с непрерывным спектром практически любого состава и обладающие световой отдачей и сроком службы, в несколько раз превышающими эти характеристики ламп иакаливамня. Люминофор подбирают таким образом, чтобы его свечение восполняло недостаток спектрального состава газового свечения. В результате получается источник, состав излучения которого приближается к солнечному (лампы дневного света). Они имеют световую отдачу до 40—  [c.154]

Эффект Доплера существенно сказывается на структуре спектральных линий источников света. Вообще следует отметить, что во. всех газоразрядных источниках света атомы и ионы газа летят с большими скоростями во всех направлениях. В зависимости от скорости они будут давать разное доплеровское смещение частоты юлучения, в результате чего спектральные линии оказываются расщиренными. Это явление называют доплеровским уширением спектральных линий.  [c.220]

Источник излучения должен быть тщательно выбран в соответствии с исследуемой областью опактра. Для работы в инфракрасной области используется накаливаемый глобар , изготовленный из спеченного карбида кремния. Для видимой и ближней инфракрасной областей спектра (до 2,5 мкм) применяется ленточная вольфрамовая лампа. Излучение в ультрафиолетовой области спектра получают с помощью газоразрядных ламп (например, водородных).  [c.168]

В практических схемах интерферометров основным способом получения двух пространственно разделенных когерентных пучков света является способ амплитудного деления волны от одного источника света при помощи плоскопараллельных стеклянных пластин. В практике газодинамических исследований наибольщее распространение получила схема интерферометра Цендера — Маха. В качестве источника света в этом интерферометре используются лампы накаливания или газоразрядные лампы. Ввиду ограниченной когерентности таких источников света возникают трудности при юстировке и наладке интерферометров. К качеству смотровых окон в таких приборах предъявляются особо жесткие требования. Кроме того, они имеют сложную конструкцию и малую разность хода лучей.  [c.223]

При перекрытии линий излучения г зов вследствие значительного их уширения или в силу близости расположения линий излучения газов, составляющих композицию, образуется сравнительно плавный (полосовой) спектр излучения. В этом случае, а таюке в случаях, когда в спектре источника присутствует как тепловое, так и люминесцентное излучение, или когда источник излучения является электрическим прибором (лампы накаливания, дуговые, дуговые газоразрядные лампы и пр.), спектральные характеристики излучения которого зазисят не только от физических свойств излучающей среды, но и от характеристик элементов конструкции  [c.45]

Для того чтобы обеспечить компенсацию потерь или пополнение запаса колебательной энергии в системе должен содержаться внутренний источник в сочетании с устройством, преобразующим энергию этого источника в требуемую форму (батарея с электронной лампой, батарея с туннельным диодом, источник тока с газоразрядным прибором, генератор напряжения или тока определенной частоты, вызывающий изменение энергоемкого параметра во времени и т. д.).  [c.144]


Примером дозиметра первого типа является употребляемый в течение многих лет микрорентгенометр Кактус (рис. 13.10), измеряющий дозы v-излучения от О до 2-10 мкР/с. Этот прибор обычно используется для контрольной дозиметрии помещений, в которых ведется работа с источниками у-излучения малой активности. Распространенным прибором второго типа является радиометр УИМ2-1еМ (рис. 13.11), используемый для контроля уровня загрязненности а- и Р-активными веществами рук, одежды и поверхностей оборудования. Главная часть этого прибора состоит из нескольких тонкостенных газоразрядных счетчиков. Прибор измеряет не дозу, а число частиц. Поэтому он называется не дозиметром, а радиометром. Среди индивидуальных дозиметроа широким рас-  [c.673]

Твердые вещества имеют широкие полосы поглощения и для накачки целесообразно использовать газоразрядные лампы с широким спектром излучения. Газообразные вещества имеют относительно узкие и весьма интенсивные линии поглощения и возбуждаются нередко с помощью газового разряда в самой активной среде, — т. е. в газе. Для газовой смеси удается получить высокую инверсию населенности при определенном режиме газового разряда. К таким средам относятся смеси гелия и неона, гелия и ксенона, неона и кислорода, аргона и кислорода и др. Обычно газовая среда состоит из двух газов, в которой активным является один из газов, а второй лишь используется для не-, редачи энергии накачки к частицам активного газа например, в ге-лийнеоновом ОКГ в состав смеси входит гелий Не и неон Ne в соотношении 10 I давление составляет 1 мм рт. ст. Источником стимулированного излучения служат атомы неона. Возбуждение достигается либо с помощью высокочастотного генератора, либо с помощью тлеющего разряда в трубке при высоком постоянном напряжении. Возбужденные атомы гелия с большим временем жизни, 1000 мксек, передают при столкновениях свою энергию атомам неона. В смеси азота с углекислым газом излучательные переходы совершаются между уровнями молекул СОз, а возбужденные атомы азота лишь передают свою энергию углекислому газу. В генераторах на аргоне генерация возникает при дуговом разряде в аргоне. Возможно использование и других газов. —  [c.223]

В газоразрядных источниках (ГИ) высокого и низкого давления используется эффект свечения газов при электрическом разряде. Для них характерна высокая яркость (10 —10 кд/м ), способность работать в модулированном и непрерывном режимах, причем модуляция осуществляется по цепи питания лампы. Индикатрисса излучения ГИ близка к сферической, размеры излучаемой области 0,1—1,0 мм. Спектр излучения ГИ обычно линейчатый или смешанный (отдельные интенсивные линии на фоне непрерывного спектра). Спектр ксеноновых ламп близок к солнечному. ГИ находят применение в стробоскопических осветителях, при люминесцентном контроле и в качестве мощных источников ИК- и УФ-излучения для длин волн 0,25—2 мкм.  [c.99]

В качестве источников света следует использовать люминесцентные лампы преимущественно типа ЛБ и ЛХБ, а также лампы накаливания газоразрядные лампы высокого давления (ДРЛ, металлогалогенные) применять не допускается.  [c.173]

Для бомбардировки мишени удобно использовать заряженные частицы — ионы, так как их легко разгонять до нужной энергии в электрическом поле. Иногда для распыления мишени применяют специальные источники ионных пучков, в которых ионы отсортиро ваны по массам и имеют одну и ту же энергию. Но чаще в качестве источника ионов используется газоразрядная плазма, из которой положительные ионы вытягиваются отрицательно заряженной мишенью. Такой способ распыления называют аонно-плазменным. Рассмотрим его более подробно. ,  [c.62]

На крышке 6 рабочей камеры (см. рис. 1) смонтированы оптическая система 8 от микротвердомера ПМТ-3, вторично-электронный умножитель 11 и катодный повторитель 12. Печь 10 служит для прогрева умножителя перед началом измерений. В тубусе микроскопа установлено уплотнение 9 из нейтрального стекла. Наличие зеркала 7 светлопольного и темнопольного изображения в микроскопе позволяет работать без специальной кварцевой оптики. Источником света служат газоразрядные лампы ПРК-7 и ДКСШ-1000, площадь освещаемого участка составляет 0,3 мм . Светофильтры вставляются в корпус лампы. При спектральных исследованиях между микроскопом и лампой устанавливается двойной монохроматор ДМР-4.  [c.33]

Он представляет собой оптический микроскоп со стробоскопическим осветр1телем, который работает синфазно с возбудителем динамических перемещений. Четкость и устойчивость стробоскопического изображения зависит соответственно от длительности световых импульсов и их скважности, за время которых увеличенное изображение исследуемого микроучастка не должно сместиться на расстояние более 0,1 мм. Такие условия достигаются применением газоразрядных импульсных источников света [3] при скорости перемещения изображения до 200 м/с или импульсных лазеров [4] при более высоких скоростях в сочетании с индуктивными синхронизаторами типа [5], обеспечивающими стабильную скважность световых импульсов.  [c.304]

Основным элементом камер, имитирующих солнечное излучение, являются источники света, в качестве которых применяют ртутно-кварцевые лампы с вольфрамовой нитью накала ИГ инфракрасного излучения и лампы ПРК ультрафиолетового излучения. Ультрафиолетовое излучение может быть также получено с помощью газоразрядных ламп, в которых возникает электрический разряд в атмосфере паров ртути, находящихся при различных давлениях. Существуют ртут-  [c.512]


Смотреть страницы где упоминается термин Источники газоразрядные : [c.482]    [c.233]    [c.772]    [c.103]    [c.155]    [c.240]    [c.90]    [c.64]   
Приборы для неразрушающего контроля материалов и изделий том 1 (1986) -- [ c.99 ]



ПОИСК



V газоразрядная —

Искровые и газоразрядные источники

Источники шума газоразрядные

Технология формирования лкминофорных покрытий на основе неорганических связующих в производстве газоразрядных источников света

Эмиссионный анализ при возбуждении спектра в газоразрядных источниках



© 2025 Mash-xxl.info Реклама на сайте