Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Последовательность проектирования системы

Последовательность проектирования системы управления оборудования очистки  [c.152]

Последовательность проектирования системы  [c.78]

Во-вторых, основным методом проектирования сложных систем является блочно-иерархический [171, при котором в процессе проектирования система рассматривается последовательно на разных уровнях иерархии с постепенно нарастающей степенью детализации. При этом анализ процессов теплообмена на каком-либо высшем уровне нужно проводить в условиях, когда внутренняя структура подсистем этого уровня еще детально не определена, и поэтому полную модель нельзя использовать из-за недостатка информации.  [c.6]


В отличие от ранее принятых в практике проектирования расчетов системы катодной защиты подземных трубопроводов, в книге впервые описано последовательное проектирование со стадиями Проект и Рабочая документация . Другое отличие книги - нами предлагаются методики расчета, в которых учитывается значительно большее количество факторов, влияющих на эффективность катодных установок. В результате, как показывает опыт, расчетные и реальные параметры катодных установок практически не отличаются.  [c.5]

Обработка каждой детали изделия или их сборка требуют определенной последовательности перемещений рабочих органов машины. При обработке партии изделий эта последовательность периодически повторяется, т. е. машина работает в цикле. В ус--ловиях крупносерийного и массового производства технологические машины предназначаются для обработки определенных (а не любых) изделий, т. е. могут реализовывать лишь конечное число различных циклов. При проектировании системы управления приводом машины все указанные циклы перечисляют в задании.  [c.212]

Проектирование системы разогрева представляет собой весьма сложную задачу, где не все факторы поддаются точному учету. Поэтому в ходе пусконаладочных работ необходимо внимательно проверить работу нагревателей, отрегулировать мощности на отдельных участках, изменяя число одновременно включаемых нагревателей, их длину (проволочные нагреватели удобны тем, что их сопротивление легко изменять, меняя их длину), определить последовательность и сдвиг по времени включения в зависимости от инерционности отдельных участков.  [c.80]

Нормальная процедура проектирования системы КПТ предусматривает детальную проектно-конструкторскую проработку варианта системы, который выявлен как оптимальный в результате технико-экономического обоснования и утвержден к разработке соответствующим заданием. Основой технологического проектирования на этой стадии работ являются поверочные расчеты на ЭВМ с помощью изложенных в гл. 3 математических моделей, позволяющих выработать окончательные технологические решения, удовлетворяющие заданию. Использование поверочных математических моделей предполагает задание вполне определенных исходных величин (длины и профиля каждого расчетного перегона, типа и числа воздуходувных агрегатов на каждой станции и др.) некоторые из них неизвестны и их отыскание является конечной целью технологического проектирования. Таким образом, поиск приемлемого проектного решения для системы КПТ состоит в последовательных приближениях, при которых многократно используют поверочные математические модели с соответствующей коррекцией исходных данных, вводимых в модели на каждом последующем шаге (см. рис. 101.).  [c.190]


Цель второго этапа проектирования схемы машины (синтез структурной схемы) — выбор принципиальной схемы строения машины, т. е. рода и класса машины. Решается вопрос о способе соединения двигателя с передаточными механизмами, а последних — с исполнительными выбирается характер перемещения объекта обработки в машине и в связи с этим устанавливается позиционность, возможность использования многоинструментальной обработки и т. д. определяется последовательность основных и вспомогательных операций, структура технологического, кинематического и рабочего цикла машины. Структурная схема, таким образом, дает необходимые данные к проектированию системы управления, поскольку определяется взаимосвязь исполнительных механизмов. Это позволяет рассматривать структурную схему машины-автомата как блок-схему системы управления. Структурная схема машины характеризует систему привода машины и определяет основные энергетические потоки от двигателя к исполнительным механизмам. Наконец, структурная схема является первым шагом в создании принципиальной компоновочной схемы машины.  [c.224]

Известны три способа вывода ФП плоских элементарных механизмов. Первый способ, наиболее общий, заключается в последовательном проектировании размеров звеньев механизма на оси прямоугольной системы координат с последующим объединением двух полученных уравнений. Второй способ основан на решении треугольников, образованных звеньями механизма (в отдельных  [c.43]

Циклограммы и системы управления. Для выполнения заданного технологического процесса обработки изделия необходимо обеспечить определенную последовательность взаимодействия технологического оборудования, средств механизации и автоматизации и контрольно-блокирующих устройств, что достигается применением соответствующей системы управления. При проектировании системы управления используют цикловую диаграмму (циклограмму), которая показывает порядок взаимодействия всех механизмов средств автоматизации между собой и технологическим оборудованием.  [c.223]

Последовательность проектирования ВОСС в значительной мере определяется спецификой системы связи и уело-  [c.182]

Наиболее сложная система проектирования технологического процесса будет в том случае, когда отсутствует прототип. Например, при синтезе операции необходимо определить состав и последовательность переходов при обработке всех поверхностей детали.  [c.155]

При работе экспертной системы продукции выбираются в определенном порядке из базы знаний в соответствии с некоторой управляющей структурой. Такая структура может быть представлена в виде графа (сети) или дерева, отражающих взаимосвязи между компонентами проектных решений в данной предметной области. Управляющая структура может быть воплощена в самих продукциях или быть отделенной от них. Выбор конкретного маршрута в управляющей структуре, т. е. выбор последовательности продукций, порождающих проектные решения, зависит от исходных данных, указанных в задании при обращении к экспертной системе. Эти исходные данные в сочетании с данными об условиях проектирования и текущем состоянии проекта, хранящимися в базе данных, позволяют присваивать конкретные значения переменным, фигурирующим в продукциях. Становится возможной проверка истинности условий, входящих в продукции, по результатам проверки активизируются действия в соответствующих продукциях, в том числе осуществляются переходы по сети между продукциями.  [c.385]

В конкретных технических дисциплинах зародились и получили развитие принципы построения технических объектов, приемы и типовые последовательности выполнения проектных задач, системы основных понятии, терминов, классификаций, оценок проектируемых объектов. Многие положения, принципы и приемы традиционного инженерного проектирования совместимы с требованиями автоматизации и оказали определенное влияние на методологию современного АП.  [c.9]


Проектирование сложного объекта невозможно выполнить полностью автоматически без участия проектировщика. Диалоговые системы, обеспечивающие взаимодействие проектировщика с ЭВМ, являются обязательной составной частью современных САПР. Диалог есть последовательность обменов сообщениями между ЭВМ и человеком. Сообщения могут быть входными и выходными, информационными, запросами и ответами. Диалог может иметь формы сценарную, таблицы, директивы и на ограниченном естественном языке. Важным понятием диалогового взаимодействия является граф состояний экрана дисплея.  [c.123]

Системность. САПР, как и всякая сложная система, должна строиться в виде совокупности функциональных модулей (подсистем). Последовательное, поэтапное создание и подключение подсистем позволяет постепенно наращивать САПР, ускоряя получение эффекта от автоматизации проектирования при максимальном использовании ограниченных ресурсов.  [c.16]

Наиболее сложными задачами технологического проектирования ЭМП являются задачи разработки технологического процесса, а точнее — сложной системы технологических процессов, которые при последовательно-параллельных сочетаниях обеспечивают производство ЭМП. Наглядное представление о технологической сложности ЭМП дает схема производства, приведенная на рис. 6.9 для синхронных генераторов с бесконтактной системой возбуждения и принудительным воздушным охлаждением.  [c.182]

Наиболее употребимыми формами представления математических моделей для решения задач проектирования электромеханических объектов являются последовательности расчетных зависимостей, алгебраические и дифференциальные уравнения и их системы, логические выражения, эквивалентные схемы замещения.  [c.96]

По принципу итерации система автоматизированного проектирования работает итеративно, т. е. путем последовательных приближений, постепенно уточняя и конкретизируя результаты.  [c.548]

Для динамического контроля сборки сложных изделий в комплексных системах сквозного проектирования разработана специализированная среда. Она позволяет наглядно представить пространственную компоновку всех элементов большой сборки . В режиме анимации есть возможность проследить последовательность сборки, оценить коллизии и перемещение всех деталей механизмов.  [c.44]

Этот курс является фундаментальным в системе подготовки инженеров. Структура и содержание курса предусматривают обязательное последовательное изучение составляющих его дисциплин и их разделов при творческой направленности лабораторного практикума и курсового проектирования.  [c.9]

Результаты проведенных исследований позволяют сделать следующие выводы относительно последовательности решения прикладной задачи проектирования линейной колебательной системы составляется точное математическое описание системы (модель), затем методами декомпозиции эта система по ряду признаков разбивается на определенное число подсистем меньшей размерности, далее каждая подсистема подвергается анализу на ЭЦВМ или АВМ с использованием методики планируемого эксперимента, в частности метода ПЛП-поиска. На основе такого эксперимента строятся упрощенные математические зависимости. Таким образом, для целого класса колебательных систем, описываемых линейными дифференциальными уравнениями, проектировщик получает зависимости, позволяющие ему сразу принять то или иное проектное решение. В частности, проектировщик может подобрать такие сочетания параметров, при которых собственные частоты системы будут находиться вне требуемого частотного интервала или амплитуды колебаний в этом интервале будут существенно уменьшены,  [c.23]

Любой объект конструкторской разработки можно отнести к классу технических систем, а сам процесс разработки, осуществляемый с учетом заданных условий проектирования, изготовления и эксплуатации, рассматривать как процесс последовательного изменения состояния конструируемых технических систем. К основным операциям, образующим этот процесс, относятся формулирование цели системы, выбор оптимального проекта системы из ряда имеющихся и возможных альтернативных вариантов (проектов), анализ оптимального варианта системы и выделение компонент выбор из числа имеющихся или конструирование новых компонент синтез компонент и образование системы.  [c.105]

В процессе разработки технического предложения на систему АЛ ввиду недостаточной детализации проектных решений критерии отбора вариантов систем АЛ носят обобщенно-эвристический характер. Они последовательно (от стадии разработки технического задания до этапа разработки рабочего проекта) уточняются и достигают вполне конкретных показателей по точностным и качественным параметрам. Проектирование на каждом этапе расчленяется на совокупность взаимосвязанных между собой проектных операций. Система САПР АЛ формирует множество проектных вариантов, анализирует их, проводит оптимизацию и отбирает наиболее рациональный вариант.  [c.106]

Прикладное программное обеспечение, являясь моделью производства, должно отображать все его стороны, существенные для решения возложенных на АСУ задач, в том числе дуальный характер управления. В связи с этим можно сформулировать два класса задач, решаемых в процессе адаптации первая — уточнение представлений о процессе проектирования технологии производства (например, о разрешенной или целесообразной последовательности операций при обработке некоторой детали п др.) об управляемых объектах путем корректировки соответствующих моделей на основе, например, статистической обработки наблюдений, указаний операторов и т, д. вторая — изменение системы правил выработки решения на управление подчиненными объектами, а при необходимости — и правил обработки информации применительно к конкретно решаемым задачам производства и производственным условиям. ,  [c.56]

Возможность диалогового взаимодействия ЭВМ и оператора на достаточно высоком интеллектуальном уровне. Это требование к ААУ обусловлено человеко-машинной концепцией трактовки процесса проектирования технологии производства. Здесь более правильно говорить не об автоматных АСУ, а о классе смешанных человеко-машинных систем, в которых имеются человеческая (операторы) и машинная части. В связи с этим операторы должны использовать ЭВМ не как автомат, выполняющий в соответствии с программой, заложенной в него, определенную последовательность действий, а как помощника, партнера, способного дать совет, подготовить необходимую в данный момент информацию, сформулировать план действий, решить задачу, ранее не стоящую перед системой.  [c.57]


Запись математических моделей на языке ЭВМ выполняется в несколько этапов. Сначала модель-описание представляется в форме алгоритма, т. е. упорядоченной последовательности действий, приводящих к требуемому результату в рамках заданных ограничений на систему входных данных. Наиболее удобной формой представления алгоритмов для инженерных задач принято считать блок-схему. На основании блок-схемы и тестовых задач составляется и отлаживается машинная программа. Готовая программа включается в состав библиотеки ЭВМ и системы автоматизированного проектирования.  [c.68]

В настоящее время широко используют минимальный вариант подсистемы графического отображения — один или несколько чертежных автоматов, соединенных с ЭВМ. Программное обеспечение чертежных автоматов является подсистемой системы программ отображения (см. рис. 29) и включает только те программы, которые необходимы для преобразования результатов автоматизированного проектирования в массивы команд автомата. Программы объединяются в группы и реализуются в определенной последовательности. Передача управления и обмен данными осуществляются посредством управляющих программ, или же эти функции закладываются непосредственно во взаимодействующие программы. Программные подсистемы такого типа в современном программировании принято называть пакетами программ. Пакет характеризуется входной системой данных выходной системой данных составом и структурой внутренних программ, образующих в совокупности тело пакета наличием управляющих программ.  [c.71]

Анализируемый при машинном проектировании механизм, состоящий из жестких звеньев, соединенных между собой различными видами кинематических пар (вращательной, поступательной, сферической и др.), образует замкнутую кинематическую цепь, сформированную из контуров [1,2]. Для исследования на ЭЦВМ контур механизма заменяется последовательностью систем координат с переменными или постоянными между ними соотношениями. Соотношения между системами координат выражаются матрицами преобразования.  [c.83]

В результате проведенных исследований [5] установлено, что наибольшее влияние на быстроходность (определяемую как средняя величина скорости выходного звена работа) оказывает путь этого звена. При малых величинах пути, составляющих десятую часть максимального перемещения, величина средней скорости обычно в несколько раз ниже паспортной. Такое снижение скорости надо учитывать при проектировании роботов с адаптивными системами управления, для которых характерен режим поиска, когда цикл движения схвата руки включает ряд последовательных небольших перемещений, задаваемых датчиками системы очувствления [5].  [c.224]

Важное свойство языков, развиваемых в рамках этого направления, состоит в том, что они явл яются входом в программный процессор создания соответствующей базы данных, в которой последовательно накапливаются сведения о каждом шаге проектирования системы. В результате этого обеспечивается принципиальная возможность информационного отображения всей иерархии проектных работ в многоуровневой базе данных, использование которой создает условия для целенаправленного руководства проектированием, распределения проектных операции между разными исполнителями, координации внесения корректив в цепочки взаимодействующих проектных процедур.  [c.40]

При проектировании транспортнотехнологических систем важно обеспечить независимое взаимодействие отдельных частей комплекса. Тогда при любом случайном выходе из строя отдельной части системы основная линия может продолжать работу. Такая компоновка системы обеспечивает новы-щенную надежность ее работы. Последовательное насыщение системы взаимосвязанными механизмами, кроме усложнения, значительно понижает об-  [c.266]

Для удобства работы с системой проектирования в экранном меню содержится строка HELP вызова краткой справки о последовательности проектирования и назначении функций пользовательского меню.  [c.433]

Системное проектирование комплексной САПР МЭА основано на синтезе структуры и оценке эффективности вариантов ее построения. Оценка эффективности обычно используется на высших иерархических уровнях проектирования сложных систем, к которым, как уже отмечалось, можно отнести и комплексные САПР. Процедура синтеза структуры комплексной САПР, состоящая из ряда последовательных процедур, таких как процедура выработки характеристик типового проектного решения (а-процедура), первичного синтеза структуры САПР (Р-процедура), оптимизация параметров, описывающих структуру САПР (у-процедура), реализации параметров (а-процедура), подробно рассмотрена в 4.1. Сложность и трудоемкость процедуры синтеза вызывают необходимость ее авто-й1атизации. Основой для автоматической реализации описанных выше формальных процедур является наличие формализованных описаний структуры САПР и ее компонентов. Первым шагол на пути создания автоматизированной процедуры синтеза структуры комплексной САПР является разработка проблемно-ориентированного языка системного проектирования для формализованного описания всей исходной информации при проектировании системы [22].  [c.157]

Рещение задач в автоматизированной системе проектирования технологических процессов сборки осуществляется в пакетном или диалоговом режиме [13 . В режиме, основанном на диалоге технолога-программпста с ЭВМ, за человеком остается право выбора лучшего варианта решения из числа возможных, полученных на ЭВМ на очередном уровне проектирования. При этом в процессе проектирования можно изменять его последовательность, изменять или дополнять исходные данные, исключать некоторые этапы. В пакетном режиме проектирование осуществляется при неизменной последовательности решения. задач всех уровней без вмешательства проектировщика.  [c.83]

Основные данные для подготовки УП обработки на станке с ЧПУ содержатся в чертеже детали. Но перед вводом в ЭВМ геометрические параметры необходимо представить в закодированном виде. Для описания информации в требуемом виде используется специальный входной язык системы автоматизированной подготовки управляющих программ (САП УП). Входные языки существующих САП, таких, как APT, ЕХАРТ, СПС — ТАУ, АПТ/СМ и др., близки по структуре. Они состоят из алфавита языка инструкций определения элементарных геометрических объектов (точки, прямые линии, окружности) инструкций движения способов построения строки обхода введения технологических параметров способов разработки макроопределений и построения подпрограмм способов введения технологических циклов способов задания различных вспомогательных функций и т. п. Эти системы характеризуются тем, что все основные технологические решения даются технологом, так как входной язык ориентирован только на построение траектории перемещения инструмента, а технологические вопросы, связанные с обеспечением заданной точности и последовательности обработки, выбора инструмента и т. д., не могут быть решены на основе применения входного языка. Для автоматизации проектирования технологических процессов разработаны языки, позволяющие решать технологические задачи. Однако геометрическое описание детали, полученное с помощью этих языков, недостаточно детализировано для проектирования управляющих программ. Поэтому для комплексных автоматизированных систем конструирования и технологического проектирования, включая подготовку УП к станкам с ЧПУ, необходим многоуровневый язык кодирования геометрической информации, учитывающий специфику каждого этапа проектирования.  [c.169]


Совмещенное проектирование, иначе называемое параллельным ( on urrent design), имеет целью сокращение временных затрат на проектирование изделий и заключается в совмещении во времени операций, процедур или этапов, которые в соответствии с традиционными методиками выполняются последовательно. Примером может служить частичное совмещение во времени процедур конструкторского проектирования и технологической подготовки производства, проектирования аппаратных и программных частей вычислительной системы и т.п. Совмещенное проектирование основано на информационном взаимодействии многих программ, т.е. на ALS-технологиях.  [c.246]

Если методом обращения движения остановить первое звено, то не будет нарушено относительное движение звеньев, входящих в систему. Поэтому второе звено при своем перемещении все время касается первого последовательно в точках А , Ад, А ,. .. (рис. 129, б). Таким образом, требование существования общей касательной в точке сопряжения профилей приводит к тому, что первый профиль является огибающим второго профиля в его движении относительно первого. Если сообщить всей системе вращение вокруг центра Яа с угловой скоростью (— oj). то второй профиль будет огибающей всех положений первого профиля в движении его по отношению ко второму. Таким образом, кривые, образующие высшую пару, являются взаимоогибающими (или огибаемыми) кривыми. Из этого следует исходить при проектировании профилей механизмов с высшими парами.  [c.114]

Испытания опытных и серийных образцов. При проведении испытаний на надежность необходимо распределять их объем между опытньм и серийным производством машины, установить основные виды испытаний и так спланировать их последовательность, чтобы быстрее получить необходимую информацию и внести соответствующие изменения в конструкцию изделия. В этом отношении большой опыт накоплен передовыми машиностроительными заводами. Так, один из создателей системы КАНАРСПИ (см. гл. 9, п. 5) канд. техн. наук Т. Ф. Сейфи считал, что, исходя из принципа скорейшего получения информации о надежности, максимум испытаний и исследований должно проводиться в период опытного проектирования и изготовления опытного образца изделия. Однако, как правило, этих испытаний оказывается недостаточно, так как при проведении испытания одного опытного образца изделия можно случайно получить такие результаты по надежности, которые не будут отражать действительной картины. Поэтому исследования проводятся также в процессе подготовки производства и в ходе серийного изготовления машины, тем более, что технологический процесс изготовления опытного образца изделия всегда отличается от серийного, что не может не повлиять на показатели качества и надежности изделий. Кроме того, при испытании на надежность серийных образцов должно быть учтено следующее  [c.483]

Для систем, функционируюш их в условиях динамической среды, к которым относятся и автоматизированные производства с гибко переналаживаемой технологией, эффективность управления зависит от полноты и достоверности сведений как о состоянии объектов управления, так и об условиях производства. Таким образом, в процессе проектирования производства и управления производством решаются две взаимосвязанные задачи первая — посредством анализа имеющейся и поступающей информации изучаются свойства, состояния управляемых объектов и условия функционирования системы управления вторая — на основе этих данных определяются действия и их последовательность, необходимые для управления. В общем случае процессы изучения управляемых объектов, условий их функционирования и управления ими связаны и образуют сложный двойственный или дуальный процесс, развитие которого определяет качество функцио-  [c.55]

Графическое взаимодействие является эффективным методом автоматизированного проектирования только при использовании многопрограммных ЭВМ с разделением времени. Современные мощные ЭВМ третьего поколения способны обеспечить оперативное графическое взаимодействие с десятками одновременно работающих проектировщиков. В экспериментальных целях иногда применяют менее совершенную технику, так как большинство эксплуатируемых в настоящее время ЭВМ не имеют режима разделения времени. Необходимыми условиями оперативности системы графического взаимодействия являются также высокое быстродействие и большой объем оперативной памяти. Оперативность определяется временем выполнения дисплейной команды — от ввода до отображения полученных результатов. Время должно составлять в обычных случаях несколько секунд, а при решении сложных задач — десятки секунд. Получив сигнал с пульта дисплея о начале ввода информации, управляющая программа ПОГВ через операционную систему ЭВМ осуществляет прерывание и временную приостановку счета текущей программы, устанавливает требуемую последовательность программ ПОГВ и затем управляет полным циклом выполнения дисплейной команды — от задания информации оператором до отображения результатов на экране.  [c.81]

Перечисленные группы представляют собой последовательные независимые барьеры, препятствующие возникновению аварий и локализующие их последствия. Они направлены на по-выщение надежности и безопасности блока. При этом защиты групп 1—4 направлены в основном на повышение надежности блока, т. е. его способности выдавать энергию в сеть даже при нарушениях технологического режима. Защиты групп 5 и б (а частично и 4) направлены на повышение безопасности блока. Требования безопасности и надежности в известной степени противоречивы. С точки зрения безопасности целесообразно полностью останавливать блок даже при малых нарушениях, так как существует небольшая вероятность того, что это нарушение (если на него наложатся неправильные действия систем управления или окажутся неисправными резервные системы) перерастет в тяжелые последствия для блока. Однако, уделяя главное внимание вопросам безопасности блока, при проектировании систем защит не идут по пути остановки блока при любых неисправностях, так как это снизило бы надежность энергоснабжения и создало бы непреодолимые трудности в работе энергосистемы, особенно при большом удельном весе АЭС в ней.  [c.149]

В целях значительного сокращения цикла и снижения трудоемкости проектно-конструкторских работ, повышения производительности труда инженерно-технических работников взамен официально ранее существовавших в промышленности 18 систем конструкторской документации разработан и утвержден комплекс (около 120) государственных стандартов Единой системы конструкторской документации (ЕСКД) Единая система конструкторской документации, введенная с 1 января 1971 г., устанавливает для всех предприятий и организаций СССР единый порядок, последовательность и организацию проектирования новых изделий, а также единые правила оформления и выполнения конструкторской документации.  [c.13]

Резервирование элементов, составляющих слошую техническою систему.является одним из методов повышения надежности. Наличие ограничивающих факторов,например по стоимости, весу или объему системы, ставит задачу оптимального выбора степени резервирования. При проектировании и аналдзе возможных вариантов. сложной технической системы необходимо также знать зависимость надежности системы от уровня ограничивающего фактора. Такая зависимость представляет собой доминирующую последовательность векторов резервных элементов /i/.  [c.65]

Прогнозирование на стадии проектирования фрикционно-температурных характеристик тормоза методами ТДТИ. Для исследования работы тормоза с помощью системы уравнений ТДТИ необходимо иметь некоторые дополни-дельные исходные данные для приведенной последовательности расчета в зависимости от температуры. Эти коэф-  [c.309]

Первые варианты проблемных систем программирования в теплоэнергетике прошли апробацию на ЭВМ второго поколения. В частности, в СЭИ СО АН СССР создана система машинного проектирования программ (СМПП), которая на основе математических определений элементов агрегата, схемы и связей между переменными и элементами выбирает необходимые уравнения и устанавливает оптимальную (по числу итерируемых величин) последовательность их решения.  [c.191]


Смотреть страницы где упоминается термин Последовательность проектирования системы : [c.54]    [c.29]    [c.298]    [c.122]    [c.24]   
Смотреть главы в:

Внутренние санитарно-технические устройства Часть 1 Издание 4  -> Последовательность проектирования системы



ПОИСК



О проектировании систем КПТ

Последовательность

Последовательность Последовательность

Системы в кокиль — Определение площадей поперечных сечений элементов 86 — 88 — Последовательность проектирования 81 Разновидности систем и их схемы



© 2025 Mash-xxl.info Реклама на сайте