Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Особенности фронтов

В баллистических экспериментах, выполненных в 50-е. гг., было обнаружено, что при движении моделей во фреонах в определенных условиях фронт головной ударной волны перестает быть гладким. На фронте головной ударной волны возникают многочисленные тройные конфигурации (пересечения в одной точке трех ударных волн). Картина течения становится такой же, как и за плоской ударной волной при наличии поперечных возмущений. В ряде случаев фронт волны остается гладким, а за ним возникает турбулентное течение. Сопротивление моделей существенно меняется. В дальнейшем были выполнены опыты в ударной трубе с инертными газами (аргон, криптон, ксенон) и с молекулярными (углекислый газ). Выяснилось, что распространение сильных ударных волн (при скорости несколько километров в секунду) имеет ряд особенностей. Фронт волны перестает быть плоским, в ряде случаев фронт разрушается, распределение плотности и концентрации электронов в релаксационной зоне имеет немонотонный характер (рис. 4.1, 4.2). Все эти особенности обнаруживают пороговый характер по скорости волны и начальному давлению. Малые примеси водорода (порядка 1%) оказывают стабилизирующее воздействие на течение. Описанное явление получило название релаксационной неустойчивости ударных волн. Существенную роль при этом, по-видимому, играет интенсивный переход энергии возбуждения в кинетическую.  [c.81]


Таким образом, волновой фронт общего положения в трехмерном пространстве имеет только ребра возврата и точки типа ласточкин хвост . При движении фронта в отдельные моменты времени наблюдаются еще перестройки трех типов А , В1 (см. добавление 12, где нарисованы соответствующие каустики, заметаемые особенностями фронта при его движении).  [c.334]

Замечание. Вещественные формы простых особенностей фронтов также допускают описание в терминах групп отражений.  [c.452]

Задача. Докажите, что особенности педальных к типичным гиперповерхностям совпадают (с точностью до диффеоморфизма) с. особенностями фронтов типичных лежандровых отображений (и, следовательно, с особенностями двойственных гиперповерхностей для типичных  [c.67]

Задача. Докажите, что особенности огибающих нормальных гиперплоскостей, построенных по типичной гиперповерхности, диффеоморфны особенностям фронтов типичных лежандровых особенностей (и, следовательно, особенностям типичных волновых фронтов, графиков преобразований Лежандра и педальных гиперповерхностей).  [c.68]

Связь между особенностями фронтов и теорией групп отражений оказалась мощным инструментом при изучении геометрии фронтов, предоставляя возможность использовать теорию инвариантов, групп и алгебр Ли, алгебраическую геометрию и т. д.  [c.75]

Раскрытые зонтики лагранжева многообразия соответствуют особенностям фронта типа сложенный зонтик . Нормальная форма сложенного зонтика — это поверхность в 3-пространстве, задаваемая  [c.154]

Единственными особенностями фронта типичной кривой в RP" являются многомерные ласточкины хвосты (локально диффеоморфны дискриминантам Ак, к < га). Объединение фронта кривой с гиперплоскостью, двойственной соответствующей точке уплощения исходной кривой, локально диффеоморфно дискриминанту Вк-  [c.233]

Типичный гладкий начальный фронт, движущийся в неоднородном 3-пространстве, в некоторые моменты времени приобретает особенности. В момент, следующий за моментом рождения особенности, фронт должен иметь 2 изолированные особые точки нестрогой гиперболичности, в которых имеет место преобразование волн. Эти точки соединены особой кривой (представляющей те лучи, что претерпели трансформацию в предыдущие моменты времени).  [c.299]

Ниже рассмотрены некоторые особенности конструкции и расчета заклепочных соединений. Bj соединениях широких листов (см. рис. 2.4) за расчетную нагрузку принимают силу Fj, действуюш,ую на фронте одного шага t. При этом значение Fi обычно определяют по напряжениям растяжения сечении листа а—а, не ослабленном отверстиями под заклепки. Напряжение а полагают известным из  [c.51]


Заметим, что плоские (тонкостенные) решетки обладают специфической особенностью, заключающейся не только в том, что степень выравнивания потока в сечениях на конечном расстоянии за ними отличается от степени растекания но их фронту, но и в том, что при достижении определенных значений коэффициента сопротивления эти решетки даже усиливают неравномерность потока за ними, придавая профилю скорости характер, прямо противоположный характеру распределения скоростей перед ними.  [c.77]

В приведенных выводах это обстоятельство не учитывалось, т. е. принималось, что струя набегает на решетку нормально к ее поверхности. Кроме того, растекание струи по фронту решетки, так же, как и в сечениях за ней, не происходит равномерно монолитность струи в сечении р—р решетки или /—/, как показывают опыты, сильно нарушается. Все это объясняет, почему приведенные в данной главе формулы расчета растекания струи как по фронту решетки, так и по сечению 2—2 далеко за ней, не достаточно хорошо согласуются с опытными зависимостями. Особенно это касается случаев большой неравномерности. В том, что формулы расчета растекания по фронту самой решетки не везде справедливы, можно убедиться на основе следующих соображений.  [c.107]

В реальных условиях для уменьшения вероятности образования трещин часто применяют режимы, отличающиеся малыми скоростями и большим током, иногда даже рекомендуют предварительный подогрев, однако результаты в этом случае не всегда оказываются положительными, так как большое тепловыделение при незначительной жесткости конструкции может вызвать дополнительные деформации формоизменения. Из всех параметров режима особенно заметное влияние оказывает скорость сварки. С ее увеличением возрастает длина сварочной ванны, фронт кристаллизации приобретает плоский характер, образуя на оси шва зону срастания кристаллитов. Такой шов малопластичен в т.и.х. и вследствие этого подвержен образованию продольных трещин в осевой зоне.  [c.489]

Характерные особенности проекций горизонтали и фронтали приведены ниже  [c.41]

Установленная формальная аналогия, разумеется, не случайна. Как при голографировании, так и при отображении в линзовой либо зеркальной оптической системе речь идет о преобразовании одной сферической волны (предмета) в другую, также сферическую волну (изображения). Формальный вид закона такого преобразования (линейное преобразование кривизны волновых фронтов) предопределен самой постановкой задачи и никак не связан с конкретным способом его реализации. Любой способ, голографический или линзовый, может только изменить кривизну исходного волнового фронта в определенное число раз и добавить к ней новое слагаемое ), но не более того. Анализ физического явления, призванного осуществить эту процедуру, конкретизирует физический смысл соответствующего множителя и слагаемого и их зависимость от характеристик явления и конструктивных особенностей системы. Последнее оказывается очень существенным при сравнительном рассмотрении разных способов. Как уже упоминалось, применение разных длин волн на первом и втором этапе предоставляет голографии неизмеримо более широкие возможности, чем аналогичный фактор в линзовых и зеркальных системах (различие показателей преломления в пространстве изображений и предметов, иммерсионные объективы микроскопов, см. 97), ибо можно использовать излучение с очень сильно различающимися длинами волн, например, рентгеновское и видимое (когда будет создан рентгеновский лазер).  [c.253]

Интерференционное поле, образующееся в области перекрытия опорной и предметной волн, конечно, не локализовано на поверхности фотопластинки. Как и в любом опыте с когерентными волнами, места повышенных и пониженных значений амплитуды суммарного колебания распределены во всем пространстве по тому или иному закону, зависящему от вида волновых фронтов. Поэтому в слое фоточувствительной эмульсии, всегда обладающем некоторой толщиной, образуется трехмерная структура почернений, а не двумерная, как приближенно предполагалось нами ранее. Вместе с.тем, законы дифракции света на трехмерных структурах имеют свои особенности (см. гл. X), которые, как сейчас выяснится, находят интересные применения в голографии.  [c.262]


Буквой С обозначено стекло фотопластинки. Лазерная волна играет также роль опорной, образуя вместе с предметной волной интерференционное поле, передающее все особенности волнового фронта, идущего от объекта, и имеющее поэтому весьма сложную  [c.264]

Опыт показывает, что закон изменения амплитуды на волновом фронте зависит от конструктивных особенностей резонатора. Если резонатор образован двумя плоскими параллельными зеркалами,  [c.801]

Согласно данным этого автора можно сделать вывод, что отрицательное действие, языков на процесс вытеснения нефти оторочкой особенно сильно проявляется при небольших кернах, в которых расстояние, пройденное фронтом вытеснения, больше соответствует промысловым условиям.  [c.16]

Динамическими голограммами являются такие голограммы, для получения которых процессы регистрации и восстановления волновых фронтов проводят одновременно. Формирование динамических голограмм осуществляют так же, как и стационарных голограмм — в результате воздействия на регистрирующую среду двух пучков света опорного и объектного, но в отличие от классических голограмм, восстанавливают динамические голограммы теми же двумя пучками, что создает интерференционную структуру светового поля. При. этом характеристики динамической голограммы взаимосвязаны с записывающим интерференционным полем. Именно обратное воздействие голограммы на поле световых волн является основной особенностью динамической голограммы, которая открывает широкие перспективы для голографического преобразования волновых полей в реальном времени.  [c.66]

Многочисленные опыты показывают, что всякое повышение давления, возникшее в каком-либо месте газовой среды, распространяется в ней с большой скоростью во все стороны в виде волн давления. Слабые волны давления движутся со скоростью звука их изучением занимается акустика. Сильные волны давления, как видно из опытов, распространяются со скоростями, значительно большими, чем скорость звука. Основная особенность сильной волны давления заключается в том, что фронт волны очень узок, в связи с чем состояние газа (давление, плотность, температура) изменяется скачком ).  [c.114]

Характерной особенностью прямого скачка уплотнения, как можно было заметить, является то, что, пересекая его фронт, газовый поток не меняет своего направления, причем фронт прямого скачка располагается нормально к направлению потока. Помимо прямых скачков уплотнения, встречаются и так называемые косые скачки уплотнения. Фронт косого скачка располагается  [c.126]

Давления как за фронтом ударной волны (р2), так и в конце зоны горения рз), очевидно, не изменяются от того, что мы обратили движение, т. е. могут быть определены по формулам (63) и (79). Можно, однако, посредством (92) придать формуле (79) следующий особенно простой вид  [c.231]

Трудности, возникающие в эксперименте при фотографировании процесса распространения волн напряжений, обусловлены малой продолжительностью явления, сочетающейся при изучении движения поверхности с малостью перемещений, а при изучении движения фронта волны—с высокими значениями скорости распространения. Возникает потребность в синхронизации источника освещения с исследуемым явлением, при этом главная задача состоит в получении хорошего снимка. Для этого используют особенности изучаемого явления, так, например, удар снаряда о преграду можно использовать для начального включения искры, разрыв проволочек на пути движения снаряда в преграде обеспечивает последующие включения искры. Для получения одиночного изображения движущегося объекта применяется метод, в котором объект перекрывает пучок света между фотоэлементом и конденсатором. Синхронизация движения объекта с одиночной вспышкой достигается изменением расстояния между предметом и его положением, при котором он прерывает луч. Если фотографируемое явление сопровождается звуком, то можно использовать микрофонный адаптер. Синхронизация между явлениями, порождающими звук, и источником света достигается изменением положения предмета относительно микрофона ряд последовательных фотографий повторяющихся операций получают изменением положения микрофона от экспозиции к экспозиции. В зависимости от конкретной задачи возможны различные комбинации микрофонного адаптера и связанной с ним аппаратуры.  [c.30]

Будем исходить из несколько более общей постановки задачи Римана для случая разрывных коэффициентов, чем в 1 гл. I, допустив наличие в точках а , v особенностей типа б-функ-ции. Отметим, что в бесконечности особенности быть не может из-за условия (10.19). Можно показать также, что наличие полюса в точке 1-2 привело бы к бесконечным напряжениям на фронте продольной волны, что также будем исключать. Поэтому общее решение задачи Римана (10.26) можно представить в виде (А/ — постоянные)  [c.452]

Наиб, успех достигнут в приложениях К. т. к оптике, где даже типичные особенности каустик и перестройки волновых фронтов в трёхмерном пространстве ве были известны. Рассмотрим возмущение (свет, звук, ударную волну, эпидемию и др.), распространяющееся с единичной скоростью из области, ограниченной гладким фронтом. Чтобы построить фронт через время t, нужно отложить отрезок длины t на каждом луче нормали. Через нек-рое время на движущемся фронте появляются особеспюсти в точках каустики (огибающей семейства лучей) исходного фронта. Напр., при распрострапепии возмущения внутрь эллпнса на плоскости особенности фронта скользят по каустике, имеющей 4 точки возврата (рис. 3). Эти особенности устойчивы (не исчезают при малой деформации исходного фронта). Типичные особенности фронтов в трёхмерном пространстве — это самопересечения, рёбра возврата (нормальная форма х =у ) и л а с т о ч к и н ы хвосты [рис. 4 эта поверхность образована точками (а, Ь, с), для к-рых многочлен х - ах - -Ьх- -с имеет кратный корень]. Каустики в трёхмерном пространстве имеют особенности ещё двух видов (пирамида и кошелёк рис. 5).  [c.245]


Рассмотрим результаты, полученные при высокоскоростном фотографировании фронта трещины в режиме реального времени. Для того чтобы проанализировать пространственное распределение этого фронта в образце, была разработана особая техника освещения образца пучком света, образующим с плоскостью образид угол, не равный 90°. В зеркальной зоне (рис. 6.7, а) фронт трещины в срединной плоскости обгоняет фронт на гранях образца приблизительно на 0,5 мм и его изменение достаточно гладкое. Основная особенность фронта трещины в матовой зоне (рис. 6.7, б) состоит в том, что он выглядит почти прямолинейным по толщине, но при этом состоит из ансамбля трещин. Снимок в перьевой зоне (рис. 6.7, в) показывает, что этот ансамбль характеризуется более интенсивным взаимодействием микротрещин между собой и с магистральной трещиной.  [c.167]

Наконец, подчеркнем, что Лоберо и Кайзеру (см., напри-ме р, [9.32] и цитированную там литературу), а также Пискар-скасу [9.11] удалось получить возбуждающие и пробные импульсы длительностью до субпикосекунд на основе одиночных импульсов от твердотельных генераторов, используя их в качестве импульсов накачки соответствующим образом подобранных параметрических генераторов (см. гл. 8). Полученные таким путем импульсы отличаются от импульсов лазеров на красителях особенно фронтами, на которых энергия спадает на несколько порядков ниже максимума круче, чем по экспоненциальному закону. Это позволяет очень точно измерить и малые пробные сигналы, что делает возможным определение времен релаксации в пять раз более коротких, чем длительность импульса [9.32]. Такие параметрические генераторы могут быть включены как в канал возбуждения, так и в канал пробных импульсов, что обеспечивает свободный выбор переходов возбуждения и излучения в широком диапазоне (рис. 9.13). Особый интерес представляет возможность выбора обеих длин волн в ближней инфракрасной области спектра, что позволяет непосредственно возбуждать и изучать колебательные переходы. Подчеркнем, что фотометрическая точность при измерении поглощения узкополосных параметрических пробных сигналов в общем случае превышает точность измерений с использова-  [c.340]

Многомерный случай. Об особенностях фронтов многомерных лежандровых отображений (следовательно, об особенностях эквидистант, двойственных гладким гиперповерхностей, преобразований Лежандра, подэр, первообразных и т. д.) мало что известно. Из общих теорем Варченко 29], (30], [31], [226], следует конечность числа негомеоморфных особенностей на типичных фронтах любой фиксированной размерности. Явной же топологической классификации пока нет уже для шестимерных фронтов.  [c.100]

С другой стороны, график функции времени в плоской задаче об обходе препятствия локально диффеоморфен многообразию нерегулярных орбит группы симметрий икосаэдра (группы Яз в классификации Кокстера групп отражений). В пространственной (трёхмерной) задаче об обходе препятствия эта поверхность появляется как особенность фронта (в точке касания асимптотического луча поверхности препятствия).  [c.197]

Эта модель, наиболее простая из всех, а потому и наиболее полно исследованная, была введена практически одновременно в работах Молоткова (1979) и S hoenberg (1980). В рамках этой эффективной модели была установлена эквивалентность слоистых и трещиноватых сред, разработан метод матричного осреднения, упрощающий алгебру и позволяющий более строго учесть тонкие различия, обусловленные применением осреднения на разных стадиях математического обоснования эффективных параметров трещиноватых сред. Построены и исследованы блоковые модели, отражающие эффект наличия более чем одной системы трещин, подробно рассмотрены особенности фронтов волн. Поро-трещинные среды с жидким насыщающим флюидом рассматриваются как особый случай анизотропных сред Био. Эти модели здесь подробно не рассматриваются, так как недавно вышла посвященная им монография (Молотков, 2001). Предположительно, приписывая порозаполнителю свойства виртуального мягкого вещества, варьирующие в диапазоне от свойств реальных мягких пород до свойств жидкостей и газов, можно имитировать свойства среды с шероховатыми трещинами. Такой подход весьма заманчив, так как модель трешин с гладкими стенками проще модели шероховатых трещин. Однако для реализации этой возможности необходим промежуточный этап установления соответствия между эффективными параметрами виртуального мягкого заполнителя и параметрами шероховатости.  [c.255]

Кроме рассмотренных специфических недостатков плоских (тонкостенных) решеток следует отметить трудности их применения, например из-за сложности стряхивания пыли, осаждающейся на решетках в газоочистных аппаратах (особенно при горизонтальном расположении решеток), засорения решеток пылью в случае влажного газа и липкой пыли, а следовательно, усиление неравномерности распределения концентрации частиц, взвешенных в потоке при его растекании по фронту решетки, увеличения гидравлического сопротивления аппарата и т. п.  [c.193]

Исследования отклика системы на скорость движения усталостной трещины открыли возможность резкого повышения информативности опытов по механическим испытаниям при учете критических точек [3]. Процессу разрушения, как и другим неравновесным процессам, свойственны стадийность и многомасштабность. При циклическом нагружении легче всего изучать особенности разрушения на различных масштабных уровнях [32-35]. Путь к этому открыла линейная механика разрушения, так как позволила описать локальное (у края трещины) напряженное деформированное состояние. При матическом на1ружении образца с предварительно созданной трещиной трудно обеспечить ус]ювия плоской деформации на фронте трепщны. Напомним, что условия плоской деформации предполагают образование у края трещины зоны пластической деформации, пренебрежительно малой по сравнению с длиной трещины. Для этого требуется испытать крупно1абаритные образцы при пониженной температуре (в случае пластичных материалов).  [c.300]

Рассмотрение голограммы как некоторого подобия дифракционной решетки поаволяет уяснить особенности оригинального метода восстановления волнового фронта, предложенного Ю. Н, Денисюком. В этом методе используют толстослойные (несколько десятков микрометров) фотографические пластинки. При встречных пучках (опорной и предметной волн) в толще эмульсии возникает стоячая волна. В результате фотохимических процессов в фотоэмульсии под действием монохроматического света и последующей ее обработки получается своеобразная трехмерная дифракционная решетка. Следовательно, можно восстанавливать изображение, используя источник сплошного спектра, так как трехмерная решетка пропустит излучение только той длины волны монохроматического света, под воздействием которого она образовалась (см. 6.8). Если исходное излучение (опорное и предметное) содержало несколько длин волн, то в толш,е эмульсии возникнет несколько пространственных решеток. При освеш,ении такой голограммы источником сплошного спектра можно получить объемное цветное изображение.  [c.359]

Дендриты образуются только при росте к-ристаллов. Причиной их образования является очень быстрый рост в условиях переохлаждения, то есть отрицательный температурный градиент перед фронтом кристаллизации. Одной из особенностей дендритного роста является то, что ось дендрита и его ветви растут вдоль конкретаого кристаллографического направления, характерного для данного материала [21]. Каждый дендрит растет от одного центра кристал-Рис. 33. Схема строения дендрита 1, 2, 3 - оси лизации, что подтверждается первого, второго и третьего порядка соответст- кристаллографической ориенти-венно  [c.50]


Применение метода Френеля позволяет предвидеть и обьяснить особенности в распространении световых волн, наблюдающиеся тогда, когда часть фронта идущей волны перестает действовать вследствие того, что свет распространяется между препятствиями, прикрывающими часть фронта волны. Эти явления огибания препятствий (экранов и краев диафрагм) носят название явлений дифракции.  [c.160]

Рис. 11. Металлографические особенности прохождения фронта Людерса - Чернова в условиях растяжения - сжатия железа а - следы и профиль циклической полосы деформации б - зародыш пластического течения в - схема развития пластической деформации на стадии циклЕгческой текучести г - устойчивые полосы скольжения Рис. 11. Металлографические особенности прохождения фронта Людерса - Чернова в <a href="/info/377023">условиях растяжения</a> - сжатия железа а - следы и профиль циклической <a href="/info/196152">полосы деформации</a> б - зародыш <a href="/info/27110">пластического течения</a> в - схема развития <a href="/info/1487">пластической деформации</a> на стадии циклЕгческой текучести г - <a href="/info/51650">устойчивые полосы</a> скольжения
Расиространение горения в смесях газа с горючими частицами может происходить как за счет процессов переноса — теплопроводности и диффузии, передачи тепла излучением, так и за счет газодинамических процессов — конвективного двпженпя относительно частиц горячих продуктов реакции, ударных и детонационных волн. Реализация того или иного механизма зависит от режима горения частиц, концентрации топлива, геометрии устройства, где горение осуществляется, и особенностей инициирования. При этом скорость распространения фронта горения изменяется в широком диапазоне от нескольких сантиметров до нескольких метров в секунду.  [c.402]


Смотреть страницы где упоминается термин Особенности фронтов : [c.69]    [c.69]    [c.71]    [c.73]    [c.76]    [c.28]    [c.263]    [c.684]    [c.25]    [c.268]    [c.439]   
Смотреть главы в:

Особенности каустик и волновых фронтов  -> Особенности фронтов



ПОИСК



Нормальные формы нерезкости вблизи особенностей волновых фронтов

Особенности волновых фронтов и производящие функции

Особенности систем лучей и волновых фронтов в точках нестрогой гиперболичности

Резкость и диффузия вблизи простейших особенностей волновых фронтов

Фронт



© 2025 Mash-xxl.info Реклама на сайте