Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Выравнивание потока

К — коэффициент выравнивания потока к — коэффициент теплопередачи, Вт/(м--К)  [c.4]

Сетки и решетки для выравнивания потока применяют также в успокоительных камерах, например камерах наддува и всасывания для испытания нагнетателей, прямых и фасонных частях трубопроводов и различных других объектах.  [c.10]

Чем больше угол расширения, тем на меньшей длине достигается это выравнивание профиля скорости. Выравнивание потока по сечению диффузора за начальным участком может быть объяснено тем, что в расширяющихся трубах сильно возрастает величина пульсационных скоростей, а так как средняя скорость потока по длине диффузора уменьшается, отношение пульсационных скоростей к средней, т. е. степень турбулентности, возрастает, вследствие чего повышается интенсивность обмена количеством движения между различными слоями движущейся среды.  [c.26]


Отрыв потока, начинающийся в коротких диффузорах (с большими углами расширения), распространяется дальше на участок постоянного сечения за диффузором. На этом участке полное выравнивание потока по сечению достигается лишь на расстоянии = (8-ь10) Ох [х = (16- -20 X X Ь ]. Вместе с тем на таком расстоянии профиль скорости, близкий к профилю для стабилизированного турбулентного течения в канале постоянного сечения, достигается при = 180°. Все это подтверждают опытные данные (рис. 1.25 и 1.26).  [c.31]

Дополнительное выравнивание потока в диффузорах с разделительными стенками достигается с помощью сеток, решеток или другого сопротивления, равномерно распределенного по сечению (см. рис. 1.27). Установка разделительных стенок в диффузорах с большими углами рас-  [c.32]

В некоторых случаях, при ограниченности размеров и невозможности устройства в коротких диффузорах (рис. 1.29, а) разделительных стенок или направляющих лопаток (например, если на них будут осаждаться взвешенные в потоке твердые частицы), можно применять ступенчатые. диффузоры (рис. 1.29, о), состоящие из сравнительно короткого плавного участка с небольшим углом расширения и участка с внезапным расширением сечения. Эти диффузоры создают примерно такую же неравномерность потока, что и обычные диффузоры той же длины с большими углами расширения, но имеют значительно меньшее гидравлическое сопротивление. Распределение скоростей за ступенчатыми диффузорами получается даже несколько более благоприятным, поскольку оно симметрично по сечению (рис. 1.29, в), при. этом облегчается выравнивание потока по всему сечению с помощью сеток, решеток или другого сопротивления, равномерно распределенного по сечению.  [c.35]

Выравнивание потока ускоряется при наличии сопротивления, рассредоточенного по сечению. При этом, как будет показано ниже, чем больше коэффициент сопротивления распределительного устройства тем значительнее степень выравнивания скоростей, и чем короче устройство, тем меньше протяженность пути, на котором происходит растекание потока по сечению. Постепенное выравнивание поля скоростей по сечению имеет место, например, в пластинчатых электрофильтрах (если вход потока в межэлектродные пространства этих аппаратов осуществляется с одинаковыми средними скоростями, хотя и с неравномерным для каждого пространства профилем скорости), в полых скрубберах и в других аналогичных аппаратах. Более быстрое, но также постепенное выравнивание поля скоростей происходит, например, при внешнем обтекании нескольких пучков труб в теплообменных аппаратах, при обтекании изделий в сушилах, в промышленных печах и др.  [c.73]


Заметим, что плоские (тонкостенные) решетки обладают специфической особенностью, заключающейся не только в том, что степень выравнивания потока в сечениях на конечном расстоянии за ними отличается от степени растекания но их фронту, но и в том, что при достижении определенных значений коэффициента сопротивления эти решетки даже усиливают неравномерность потока за ними, придавая профилю скорости характер, прямо противоположный характеру распределения скоростей перед ними.  [c.77]

Поэтому, рассматривая выравнивание поля скоростей или раздачу по сечению набегающей узкой струм с помощью плоских решеток, следует точно указывать, что имеется в виду — выравнивание потока (растекание струи) по их фронту или по сечениям на конечном расстоянии за ними. Для толстостенных решеток этого делать не нужно, так как степень выравнивания скоростей или растекания узкой струи практически одинаковая как по их фронту, так и по сечениям на конечном расстоянии за ними.  [c.77]

Если распределительные устройства устанавливают специально для выравнивания потока в аппарате, то интерес представляет результат, получаемый в сечениях на конечном расстоянии за этими устройствами. Если распределительные устройства являются одновременно и рабочими элементами аппарата или объектами обработки, то наиболее важной является степень растекания потока по их фронту. Следовательно, в общем случае необходимо определить степень растекания струи (выравнивания потока) как по фронту распределительного устройства, так и в сечениях на конечном расстоянии за ним. Чтобы облегчить решение этих задач, примем следующую классификацию возможных видов неравномерности потока.  [c.78]

Следует отметить, что описанный здесь парадокс , заключающийся в том, что с увеличением коэффициента сопротивления плоской решетки (выше некоторого значения) в сечениях за пей появляется новая неравномерность с перевернутым профилем скорости, долгое время не был раскрыт. Поэтому в некоторых случаях применялись (и до сих пор применяются) плоские решетки с большими коэффициентами сопротивления, которые вместо выравнивания потока дают обратный эффект.  [c.82]

ОДНОЙ области сечения за решетками в другую. Как будет показано, такая система решеток является весьма эффективным выравнивающим устройством, хотя ее сопротивление, необходимое для полного выравнивания потока, равно оптимальному сопротивлению одиночной решетки.  [c.88]

Величина К будет называться коэффициентом выравнивания потока.  [c.98]

Как видно, величина Кф не имеет отрицательных значений, т. е. перевернутый профиль скорости не получается ни при каких Срг-Наоборот, чем больше коэффициент сопротивления решетки, тем большее выравнивание скоростей происходит по ее фронту. Если вплотную к выходу потока из плоской тонкостенной решетки приставлены продольные направляющие поверхности (рис. 4.3) или если в качестве распределителя скоростей применена объемная решетка, проходные каналы которой не позволяют входящим в них струйкам перемешиваться, то коэффициент выравнивания потока за такой решеткой остается таким же, что II непосредственно перед ней, т. е. всегда К = Кф.  [c.99]

Замечания. Выравнивание потока по фронту решетки связано, как уже отмечалось, с радиальным (боковым) его растеканием, так что решетка испытывает воздействие как нормальных составляющих скоростей, так и поперечных, параллельных ее поверхности.  [c.107]

Коэффициент зависит, в свою очередь, от геометрических параметров этого устройства. На степень выравнивания потока влияет именно безразмерная величина (коэффициент) сопротивления распределительного устройства, а не абсолютная величина сопротивления, выражающегося в размерных величинах. Следовательно, степень выравнивания не зависит в отдельности ни от скорости потока ни от его плотности, давления, вязкости или других физических свойств жидкости, поскольку и коэффициент сопротивления не зависит от этих параметров в отдельности. Физические свойства могут влиять на степень выравнивания потока только в тех пределах, в которых при этом меняется число Ке, если только оно оказывает влияние на коэффициент сопротивления. Как правило, в промышленных аппаратах это влияние очень невелико, и им можно пренебречь.  [c.154]


Зависимость степени выравнивания потока от некоторых из перечисленных параметров была выявлена теоретически. Экспериментальные исследования были направлены на широкую проверку этих теоретических зависимостей, а также общих принципов выравнивающего действия решеток и изучения влияния на степень выравнивания потока тех факторов и параметров, в отношении которых это влияние не могло быть теоретически установлено.  [c.154]

При установке в рабочей камере плоской решетки (рис. 7.2, б) даже с очень большим коэффициентом сопротивления (соответственно = 30 и 315), при котором создается новая неравномерность распределения скоростей ( перевернутый профиль), выравнивание потока происходит значительно раньше, т. е. на меньшем расстоянии от входа в аппарат. Однако и в этом случае полное выравнивание скоростей (Ш х 1 и /И , 1) наступает только при Н --= НЮ 2,6л-3.  [c.162]

В случае расположения ячейковой решетки под плоской полное выравнивание ПОТОК.1 более затруднено, так как вход его под углом в каналы  [c.166]

Вследствие сложного (в основном волнистого) профиля скорости, который получается даже непосредственно на решетке (Н 0), очень трудно определить действительное значение F,.J /F — степени растекания (выравнивания) потока по решетке.  [c.170]

Более простым и объективным является определение степени выравнивания потока по коэффициенту поля М , который для большинства измеренных полей скоростей был найден графическим методом. Результаты для сечений непосредственно над плоской решеткой (Н -- 0) и над спрямляющей представлены на рис. 7.10, в виде зависимости уИ от при различных значениях FJF(, при этом для каждого сечения взяты средние арифметические значения коэффициентов Л4 , подсчитанные по полям скоростей вдоль двух взаимно перпендикулярных диаметров.  [c.170]

Значения Л4 , полученные для сечения непосредственно за плоской решеткой (Я = - 0), на первый взгляд свидетельствуют о более интенсивном и сущестЕ. енном выравнивании потока по сечению, чем это следует из значений полученных за спрямляющей решеткой (НЮу та 0,5 см. соответствующие точки на рис. 7.10). Учитывая замечания о методе определения скоростей в отверстиях плоской решетки и о подсасывающем действии более ускоренных струек в сечении за спрямляющей (ячейковой) решеткой при больших значениях р плоской решетки, следует, очевидно, принимать некоторые средние значения М,, по кривым рис. 7.10 (сплошные линии). Эти значения приведены в табл. 7.3.  [c.170]

Практически полное выравнивание потока по сечению рабочей камеры аппарата достигается путем установки за решеткой в корпусе аппарата такой же системы направляющих лопаток, что и в предыдущем варианте. Удовлетворительное распределение скоростей по сечению рабочей камеры получается также и при установке в корпусе аппарата направляющих пластинок, однако степень равномерности получается существенно меньшей.  [c.197]

С целью проверки структуры потока для рассматриваемого случая была изготовлена модель электрофильтра с осевым подводом через горизонтальный диффузор при отношении площадей Ру.1Ра= 9,7 (рис. 9.1). В качестве осадительных электродов служили плоские пластины (десять, толщиной 6 = 2 мм). Для выравнивания потока до входа в рабочую часть аппарата были установлены согласно расчету (см. гл. 4) три плоские решетки [(1=0,4 — 0,38 ( отв = Ю мм)]. Поля скоростей измерялись в двух  [c.217]

Как видно по табл. 9.5, при отсутствии газораспределительных устройств поток, отрываясь от внешней стенки подводящего диффузора, следует дальше только в нижней части рабочей камеры. В результате распределение скоростей в сечении 2—2 получается исключительно неравномерным. Для выравнивания потока были установлены две перфорированные решетки с = 0,365 и = 0,30. При этом первая с тыльной стороны имела шесть направляющих пластин, из которых четыре верхние устанавливались горизонтально, а две нижние — под углами соответственно 5 и 10 . Поле скоростей в этом случае вполне равномерное.  [c.237]

Достаточное выравнивание потока по всему течению (Л4к = 1,25) достигается при установке за направляющими лопатками одной решетки с коэффициентами сопротивления tp = 2,9 (f = 0,55) и = 5,5 (f 0,45). Однако при этом остаются местные завалы и пики скоростей. Поэтому получаемая степень равномерности распределения скоростей несколько уступает степени неравномерности в варианте с подводящим участком в виде наклонного диффузора при двух решетках с поперечными перегородками между ними (см. табл. 9.5).  [c.238]

Вопросами выравнивания потока по сечению ра.зличных каналов, аппаратов н приборов занимаются давно. Сначала эти задачи решалисн чисто эмпирически. Не было рациональных методов подбора выравнивающих устройств. Известно, что для выравнивания потока при не очень большой степени неравномерности его по сечению применялись сетки (сита) или решетки (перфорированные листы и т. п.). Путем простого подбора густоты сеток (решеток), местных накладок на них добивались необходимой степени равномерности распределения скоростей по сечению. Особенно часто к этому методу прибегали при распределении потока в аэродинамических трубах [17].  [c.10]

Изучением двухмерного стратифицированного гютока через криволинейную сетку занимался Лоу 1188], затем Лоу и Бейнс 1189]. Они разработали методы, ио которым может быть определена форма решетки, необходимая для образования требуемого профиля скорости с заданным расслоением илотиости. Для однородной жидкости эти методы получаются более сложными, чем в теории Элдера, Э( зфект выравнивания потока с помощью сдвоенных решеток теми же методами гидродинамики изучался Танакой [130, 227]. Он также решал задачу выравнивания потока с помощью сеток для S-образного распределения скоростей [131], И. С. Риман н В. Г. Черепкова [116] дали методику расчета деформации профиля скорости в каналах, образованных стержнями, расположенными соосно в трубе.  [c.12]


Результаты измерений свидетельствуют о том, что чем больше неравномерность поля скоростей на входе в диффузор, тем более вытянутыми получаются профили скорости на начальном участке. Вместе с тем (см. рис. 1.14) в последующих сечениях диффузора увеличение неравномерности скоростей на входе (увеличение относительной длины проставки) ускоряет выравнивание поперечного распределения скоростей по длине диффузора профили скорости при х > 4 и /у = 20 и соответственно х > 8 и 0 = 1 более пологие (да сшах меньше), чем при = 0. Более ускоренное выравнивание потока объясняется, как и выше, интенсификацией турбулентного перемешивания при наличии проставки перед диффузором.  [c.26]

Как было отмечено, во многих случаях выравнивание потока может быть достигнуто с помощью специальных направляющих устройсгв (лопатки, разделительные стенки и пр.). В аппаратах со сло.жными условиями подвода потока применение таких устройств не всегда достаточно эффективно, а часто конструктивно трудно выполнимо или вообтде невозможно. В.ыравнивание потока может быть осуществлено также с помощью сопротивлений, рассредоточенных по сечению. В качестве таких сопротивлений используют различные виды решеток или сеток, насыпные слон кускового или сыпучего материала и др.  [c.77]

До сих пор рассматривалось растекание жидкости с малой регулярной и с полной неравномерностями потока. При большой регулярной неравномерности нет резкой границы между трубками тока с различными скоростями и нет узкой одиночной струи (рис. 3.9, а), поэтому растекание жидкости по решетке имеет промежуточный характер. Выравнивание потока за решеткой будет, очевидно, достигаться при критическом коэффициенте сопротивления р = опт. имеющем большее значение, чем при малой регулярной неравномерности, но меньшее, чем при полной неравномерности. При коэффициенте сопротивления решетки р >> профиль скорости на конечном расстоянии будет перевернутым (рис. 3.9, в), и максимальная скорость за пешеткой окажется в той части сечения, в которой перед решеткой она была минимальной (рис. 3.9, 6), и наоборот.  [c.87]

Поскольку одна плоская решетка без дополнительных устройств не всегда достаточно эффективна при использовании ее в качестве распределительного устройства, возникает необходимость в других способах выравнивания потока. Одним из способов является последовательная установка системы плоских решеток, каждая из которых имеет меньший коэффициент сопротивления, чем необходимый коэффициент сопротивления при одной решетке. В этом случае растекание струи будет происходить постепенно от одной решетки к другой (рис. 3.10, а), что исклюйает возможность новой деформации потока вследствие перетекания жид1сости из  [c.87]

Это же выражение было получено Прандтлем [207]. Случай а ° ° 0, т. е. фх °° о (см. рис. 5.1), имеет место тогда, когда непосредственно за плоской решеткой или сеткой расположены продольные направляющие поверхности (спрямляющая решетка — хонейкомб, см. рис. 4.3). В то же время, как уже было отмечено, коэффициент выравнивания потока должен быть одинаковым как в конечном сечении за решеткой, так и перед ней, по ее фронту. Таким образом, выражение (5.58) можно рассматривать как уточненную формулу и для расчета коэффициента выравнивания потока по фронту решетки, т. е. /(ф = Аа)р/Ашо = /( = ( + Ср)С Как видно, это выражение аналогично формуле (4.29), только более уточненной.  [c.130]

На рис. 5.5 приведены зависимости коэффициента выравнивания потока К = Аша/Агйо от коэффициента сопротивления решетки р, построенные как по расчетным формулам, так и на основании данных измерений распределения скоростей [128, 167, 196]. Наиболее близко опытные данные совпадают с расчетными, полученными по выражению (5.56), в которое входит коэффициент а, определяемый эмпирической формулой (5.8) (кривая К = 1 ( р), построенная по формуле (4.28), проходит значительно ниже опытных точек). Это относится как к проволочным сеткам [167, 196], так и к перфорированным решеткам [128].  [c.131]

Указанное перетекание жидкости не происходит при наложении на плоскую решетку спрямляющего устройства в виде ячейковой решетки. Стенки ячеек не дают струйкам, вытекающим из отверстий плоской решетки, продолжить радиальное растекание, а направляют их параллельно осям ячеек. В результате степень выравнивания потока на конечном расстоянии за решеткой возрастает с увеличением р, и распределение ско-росте11 приближается к наблюдае.мому непосредственно на решетке Н = -- 0). Вместе с тем следует отметить, что рассматриваемое спрямляющее устройство в виде ячейковой решетки очень эффективно с точки зрения устранения за плоской решеткой радиального скоса потока, а следовательно, предотвращения перетекания жидкости из центральной области сечения к стенкам аппарата. Однако выравнивающее устройство в виде плоской решетки с наложенной на нее ячейковой решеткой при больших значениях / о Не может обеспечить полного выравнивания поля скоростей.  [c.165]

При Ср = 7- 9 указанная область отрицательных скоростей исчезает главным образом вследствие растекания центральной части струи, но волнистый характер профиля скорости при FJFo > 6 остается до полного выравнивания потока по фронту решетки. В случае FJF( < 6, когда относительное расстояние RJRo от оси до стенок рабочей камеры значительно меньше, чем при больших значениях F,,IF , степень растекания струи не может быть очень большой, а следовательно, перед решеткой вдоль ее фронта не могут образоваться промежуточные зоны с отрицательными скоростями, и профиль скорости будет более монолитным.  [c.170]

Для болыиьнства промышленных аппаратов стремление к полному выравниванию потока при большом сопротивлении решетки экономически не оправдано. Если учесть, что формула (4.86) дает некоторый запас п что в действительности при сравнительно больших поток в основном достаточно равномерен, то для расчета Сопт придется или ввести в формулу (4.86), точнее в формулу (4.99), соответствующую поправку, или воспользоваться другими зависимостями наиример (4.102) или (4.104). Значения 0 т и Со, т, подсчитанные соответственно но этим двум формулам, а также значения олт, соответствующие значениям М 1,15- 1,2,т. е. таким нолям скоростей, которые можно считать практически равномерными (значения Ng взяты из опыта), приведены ниже.  [c.174]

Дополнительное выравнивание потока до Л1 = 1,13 при удлиненном патрубке и /И,,. <7 2 при коротком достигается после наложения на плоскую решетку спрямляющего устройства в виде ячейковой рещетки (кривые 2, рис. 8.7, в). Спрямляющее устройство устраняет закручивание потока и стабилизирует его, что сказывается благоприятно на степени равномерности распределения скоростей по сечению.  [c.210]

Таким образом, результаты этих исследований подтверждают, что в случае нормальных условий подвода (отсутствие факторов, вызывающих отклонение потока до входа в подводящий диффузор — варианты 1-3 при д = 48 , 1-4 и П-З) подбор решеток может производиться по предложенным в предыдущих главах формулам и рекомендациям. При более сложных условиях подвода требуются дополнительные устройства для спрямления и полного выравнивания потока по сечению, например такие, как поперечные направляющие перегородки (козырьки) за первой решеткой (вариант П-12). Значения коэффициентов сопротивления, приведенные к скорости Шд в сечении Рк ( о-а = Збрд з/рЮк). всего участка от сечения О—О до сечения 2—-2 (см. табл. 9.1) могут быть взяты по последнему столбцу табл. 9.1  [c.225]


Более полные исследования показали, что рассмотренный вариант газораспределительного устройства для данной установки не является единственно возможным. В частности, результаты, близко совпадающие с приведенными выше (/Ик = 1,03), получены для второго варианта той же модели (рис. 9.4, б). Этот вариант характеризуется тем, что в выходном сечении 1Солена / (без лопаток) установлен небольшой плоский экран 3 под углом 30°. Вместе с горизонтально направленной верхней стенкой колена этот экран содействует изменению направления потока, выходящего из колена, в сторону оси и частично вниз аппарата. Это облегчает двум расчетным решеткам обеспечить необходимое выравнивание потока но всему сечению рабочей камеры электрофильтра.  [c.230]


Смотреть страницы где упоминается термин Выравнивание потока : [c.9]    [c.36]    [c.82]    [c.83]    [c.84]    [c.108]    [c.167]    [c.210]    [c.232]    [c.232]    [c.232]   
Аэрогидродинамика технологических аппаратов (1983) -- [ c.162 , c.170 , c.197 , c.232 ]



ПОИСК



Выравнивание давления воздуха как побуждающий фактор давления воздушного потока в плоскости компенсационного слоя

Выравнивание загрузки клиновых ремней в стенде замкнутого силового потока

Выравнивание простраиствеииого распределения потока иейтроиовс помощью выгорающих поглотителей

Коэффициент выравнивания потока

Коэффициент выравнивания потока диффузора

Коэффициент выравнивания потока насыпного слоя

Коэффициент выравнивания потока неравномерности

Коэффициент выравнивания потока подводящего участка

Коэффициент выравнивания потока поля скоростей

Коэффициент выравнивания потока распределительного устройства

Коэффициент выравнивания потока решетки

Коэффициент выравнивания потока сопротивления



© 2025 Mash-xxl.info Реклама на сайте