Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Структура в тепловые свойства твердых тел

Структура твердых тел, описание кристаллических решеток и другие аналогичные вопросы достаточно подробно излагаются в курсе молекулярной физики. Там же описаны механические и тепловые свойства твердых тел. В этой книге рассмотрены главным образом электронные свойства твердых тел. Но прежде необходимо проанализировать типы связи атомов и молекул в кристалле, которые обеспечивают устойчивое существование кристаллической решетки.  [c.332]


Рассмотрим задачу при наличии на поверхности тела слоя кокса, который образуется в результате выделения газов из твердого пластического материала при определенной температуре и формирования твердой решетки. Слой кокса может достигать по толщине нескольких миллиметров и существенно влиять на тепловые потоки к телу и величину уноса материала. Материал решетки кокса на границе с газовым потоком испаряется и вступает в химическое взаимодействие с потоком (механическое разрушение решетки здесь не рассматривается). Внутри материала обтекаемого тела могут происходить также эндотермические реакции , приводящие к образованию в теле нескольких слоев с различной структурой и различными термодинамическими свойствами. Каждой реакции соответствует характерная температура и скрытая теплота превращения. Пары решетки кокса вместе с газами, образовавшимися при коксовании, поступают в пограничный слой, где они могут вступать в химическое взаимодействие с компонентами смеси газов основного потока. Набегающий на тело поток также может быть многокомпонентным. Будем рассматривать стационарный режим теплового взаимодействия, когда граница газ—слой кокса, а также фронты коксования и эндотермических реакций продвигаются в глубь тела с постоянной скоростью D (тело предполагается имеющим бесконечную толщину).  [c.56]

Наибольшую эффективность использование методов и средств тепловой микроскопии приобретает в тех случаях параллельного исследования структуры и механических свойств материалов, когда в достаточно полной мере реализуется возможность анализа изменения структуры образца одновременно с изучением напряженного и деформированного состояний материала с позиций механики деформируемого твердого тела.  [c.292]

Микроскопическая неоднородность физико-механических свойств характерна для всякого твердого тела. В металлах она обязана анизотропии кристаллов. Обработанная поверхность в связи с особенностями ее образования отличается несравненно большей неоднородностью как по химической активности, так и физико-механическим свойствам. Кроме того, она имеет много микроскопических дефектов в виде трещин и пустот. Хотя подобные дефекты структуры возникают в процессе образования всей массы металла, но количество их в поверхностном слое возрастает в результате механических и тепловых воздействий при обработке.  [c.56]


Выбор макроскопической модели сплошной текучей среды с приписанными ей теми или другими свойствами отнюдь не освобождает от необходимости хотя бы беглого ознакомления с действительной молекулярной структурой жидкостей и газов и происходящими в них внутренними движениями молекул (атомов), составляющими сущность теплового движения материи. Газы, жидкости и твердые тела имеют различные микроструктуры, вследствие чего различаются между собой и тепловые движения в них. Каждое из этих трех агрегатных состояний вещества можно охарактеризовать отношением порядков величин потенциальной энергии силового взаимодействия между молекулами и кинетической энергии их теплового движения. Это отношение зависит от плотности упаковки молекул в данной структуре, т. е. от порядка средних расстояний между молекулами.  [c.12]

По своей физической структуре топочную среду (пламя) можно рассматривать как сложную многокомпонентную дисперсную си-, стему, состоящую из газообразной и твердой фаз. При этом в расчетах теплообмена излучением необходимо учитывать особенности процессов излучения, поглощения и рассеяния энергии как в объеме среды, так и на граничных поверхностях. Необходимо учитывать тепловые сопротивления слоя загрязнений на экранных трубах, оказывающие сильное влияние на тепловую эффективность экранов, а также реальные селективные свойства всех поверхностей и тел, участвующих в теплообмене.  [c.3]

В книге Линда > еще до того как вступили в строй системы с цепной реакцией. Все эти изменения в сложных веществах происходят в гораздо большей степени в котле, благодаря более интенсивному изл /чению. Существенные эффекты могут также ожидаться и в простых веществах. Эти явления имеют большой научный интерес, так как излучение котла вызывает такие искусственные образования в заметных количествах и дает возможность изучать их влияние на тепловую и электрическую проводимость, сопротивление разрыву, пластичность и т. д., и сравнить это с теорией. Можно ожидать, что изучение твердого состояния тел, особенно его свойств, чувствительных к внутренней структуре тела, будет стимулироваться легкостью экспериментов, создаваемой наличием котла.  [c.97]

Второе направление ставит своей задачей исследование спектров молекул в зависимости от их строения и характера межмолекулярных взаимодействий. Оно основывается на исследовании спектров конденсированных веществ (твердых аморфных и кристаллических тел, растворов, жидкостей и различных смесей), которые содержат новую обширную информацию о характере межмолекулярных взаимодействий, природе квантовых переходов, строении сольватных оболочек, динамике теплового движения частиц, а также физико-химических свойствах молекул в основном и возбужденном электронных состояниях. Оба направления взаимосвязаны, поскольку учет межмолекулярных сил предполагает определенное знание структуры, оптических и энергетических характеристик изолированных молекул.  [c.5]

Как известно из общего курса физики, материальные тела обладают сложной молекулярной структурой, причем молекулы среды совершают тепловые движения хаотичные в газах, более или менее упорядоченные в жидкостях и аморфных телах и колебательные в кристаллических решетках твердых тел. Эти внутренние движения определяют физические свойства тел, которые в модели сплошной среды задаются наперед основными феноменологическими закономерностями (например, законы Бойля — Мариотта, Клапейрона — в газах, законы вязкости — в ньютоновских и неиыотоповских жидкостях, закон Гука — в твердых телах).  [c.103]

Применение электронно-лучевой обработки для модификации триботехнических свойств материалов имеет определенные преимущества по сравнению с другими видами обработки концентрированными потоками энергии. Главным образом это связано с достижением больщего сечения пучка, возможностью изменения глубины проникновения электронов, независимостью от оптических свойств поверхности обрабатываемого материала. Использование интенсивных импульсных электронных пучков [146-154] позволяет путем изменения параметров облучения энергии электронов , плотности энергии пучка 5, длительности импульса t- влиять на пространственное распределение выделенной энергии и динамику тепловых полей в приповерхностных слоях твердых тел. При этом формирование структуры и фазового состава материалов определяется совокупностью протекающих микро- и макропроцессов, отражающих соответственно прохождение электронов в веществе и рассеяние энергии.  [c.252]


Тонкая структура линии рэлеевского рассеяния содержит дискретные линии, обусловленные рассеянием на тепловых волнах (рассеяние Мандельштама-Бриллюэна), расположенные симметрично относительно несмещенной компоненты. Рассеяние с изменением частоты связано с тем, что диэлектрическая восприимчивость х (э. также диэлектрическая проницаемость в = 1 + х) изменяется во времени вследствие тепловых акустических волн в веществе, характерная частота этих изменений равна г/д = и/2а, где и и а — скорость звука и постоянная решетки. Модуляция свойств среды приводит к появлению суммарной и разностной частот рассеянного света г/ г/д. Рассеяние с появлением спектральных компонент, смещенных по частоте относительно исходного излучения, является параметрическим процессом. Вероятность появления одного рассеянного фотона при облучении одной частицы (молекулы или атома) пропорциональна плотности потока квантов в пучке падающего света, но коэффициент пропорциональности (сечение рассеяния а) составляет по порядку величины всего лишь 10 ° см /ср. Отсюда получаем, что отношение интенсивности рассеянного света к интенсивности падающего /о составляет /5 / /о = = Аттапк, где п 10 см — концентрация атомов, к — толщина слоя. При прохождении светом расстояния 1 см в однородном прозрачном твердом теле рассеивается в полный телесный угол (4тг стерадиан) примерно 1з/1о 10 падающей интенсивности.  [c.50]

Коллоидные системы природных вод состоят из воды, являющейся дисперсной средой, и массы распределекных в ней коллоидных частиц, являющихся дисперсной фазой. Устойчивость коллоидных систем зависит от адсорбционных и электрокииетических свойств коллоидных частиц, обладающих сложной структурой. При погружении в природную воду, т. е. в раствор электролита, твердого тела поверхность его выделяет в раствор или адсорбирует из него ионы. Адсорбируются обычно ионы, входящие в состав этого твердого тела. В результате поглощения ионов или выделения их в раствор поверхность тела приобретает заряд. Противоположно заряженные ионы, находящиеся в растворе, собираются у его поверхности вследствие электростатического притяжения, образуя коллоидную частицу. Тепловое движение ионов в растворе сообщает слою окружающих частичку противоионов диффузный характер. Коллоидная частичка вместе с окружающим диффузным слоем называется мицеллой. Формула мицеллы золя гидроксида железа  [c.39]

Иной характер имеет различие между газообразным и красталлическим состояниями вещества. Кристаллическое состояние есть анизотропная фаза вещества, а газообразное состояние представляет собой изотропную фазу его. Поэтому непрерывный переход из твердого состояния в газообразное, а также в жидкое при высоких температурах (например, больших критической) едва ли возможен, соответственно чему кривая фазового равновесия между кристаллической и жидкой фазами не имеет конца и, в частности, критической точки фазового превращения кристаллическая фаза — жидкость, ло-видимому, не существует. Вместе. с тем нужно иметь в 1виду, что при температуре вблизи точки кристаллизации в свойствах кристаллической и жидкой фаз имеются сходные черты. Вообще при температурах, близких к температуре плавления, жидкость по своим свойствам гораздо ближе к твердому состоянию, чем к газообразному. Подтверждением этого является наличие у жидкостей вблизи точки плавления некоторого порядка в расположении молекул, вследствие чего можно говорить условно о квазикристаллической структуре жидкости. Близость свойств жидкого и твердого состояний хорошо видна из табл. 4-2, в которой приведены значения молярной теплоемкости ряда жидкостей (преимущественно расплавленных металлов, представляющих собой с точки зрения молекулярной структуры простейшие жидкости). У жидкостей молярная теплоемкость заключена между 27,6 и 36,9 кдж/кмоль град, тогда как у кристаллических тел она составляет согласно закону Дюлонга —Пти 25 кдж1кмоль град. Таким образом, молярная теплоемкость жидкостей практически такая же, как у кристаллических тел. Это означает, что частицы жидкости подобно атомам или ионам кристаллической решетки совершают периодические колебательные движения, причем в жидкостях центр колебаний может вследствие теплового движения перемещаться, в пространстве. Последнее объясняет некоторое превышение теплоемкости жидкостей по сравнению с твердым состоянием.  [c.125]

ВОСПРИИМЧИВОСТЬ — характеристика (диэлектрика, показывающая его способность поляризоваться в электрическом поле магнетика, показывающая его способность намагничиваться в магнитном поле) ВЯЗКОСТЬ [—свойство жидкостей и газов оказывать сопротивление перемещению одной их части относительно другой динамическая — количественная характеристика сопротивления жидкости или газа смещению одного слоя относительно другого кинематическая— отнощение динамической вязкости к плотности жидкости или газа магнитная — отставание во времени изменения магнитных характеристик ферром нетика от изменения напряженности внешнего магнитного поля объемная — величина, характеризующая процесс перехода внутренней энергии в тепловую при объемных деформациях среды (вторая вязкость) структурная — вязкость, связанная с возникновением структуры в дисперсных системах ударная — поглощение механической энергии твердыми телами в процессе деформации и разрущения под действием ударной нагрузки]  [c.228]


В структурах алмаза, кремния, германия и алмазоподобных соединений сильным ковалентным <т-связям вдоль направлений <111> отвечают максимальные значения модулей упругости Еиь Однако, в отличие от металлов, для этого класса материалов наиболее важны не механические, а электрофизические свойства. Определение пoJ y пpoвoдникa трудно представить до рассмотрения электронной зонной теории кристаллических твердых тел. Можно сказать, что полупроводники - это изоляторы, в которых запрещенная зона между состояниями валентных электронов (валентная зона) и электронными состояниями, ответственными за электропроводность (зона проводи.мости), значительно меньше, чем в обычных изоляторах, и может быть преодолена при наличии определенных условий, например, с помощью теплового возбуждения. Поэтому, в отличие от металлов, электропроводность пoJTV пpoвoдникoв растет с температ рой.  [c.46]

Нейтронное облучение. Как известно, ядерные реакции сопровождаются потоками элементарных частиц (у-кванты, р-лу-чи, потоки нейтронов и протонов и т. д.), энергия которых гораздо больше энергии связи атомов - твердого тела. Попадая в тело, они вызывают каскад других частиц и в итоге приводят к некоторым локальным нарушениям структуры тела. При достаточной интенсивности или продолжительности действия они могут привести к полной деструкции тела или к потере его работоспособности. Наибольшее влияние оказывают пучки нейтронов и Y-квантов, которые не несут электрического заряда и потому обладают наибольшим проникающим действием. Не имеющие массы Y-кванты воздействуют в основном на электронные оболочки при не слишком высоких энергиях и интенсивностях их действие сводится к нагреванию тела. Нейтроны способны искажать решетку, непосредственно воздействуя на ядро атомов. Нейтронное облучение вызывает ослабление пластических свойств тела, уменьшение вязкости разрушения /Сы и ведет к образованию дефектов, что также охрупчивает материал. Кроме того, в металлах важную роль играет тепловая диффузия протонов и нейтронов, вызывающих охрупчивание совершенно аналогично влиянию водорода (см. 1, 2 гл. VII) протоны могут попадать в тело через поверхность из внешних протонных пучков или же возникать в объеме тела при столкновении нейтронов с ядрами.  [c.512]

Молекулярная структура. Основные особенности жидкого агрегатного состояния вещества — способность сохранять объем, существование свободной поверхности и текучесть под действием небольшого давления. Свойства жидкостей определяются прйродой атомов, входящих в состав молекул, взаимным расположением молекул в пространстве и расстояниями между ними, от которых зависят энергия межмолекулярного взаимодействия и подвижность элементов структуры. В твердых и жидких телах существует внутренний ( свободный ) объем Vf, равный разности внешнего объема тела V и собственного объема его молекул Dq (для одного моля вещества). Отношение к = VojV, называемое коэффициентом упаковки, для низкомолекулярных органических кристаллов составляет 0,68 — 0,80, для аморфных полимеров 0,625-0,680, для жидкостей 0,5 [81]. Структуру жидкости можно представить в виде множества определенным образом организованных молекулярных комплексов (роев), совершающих тепловое движение, в которых и между которыми спонтанно возникают  [c.21]

АНИЗОТРОПИЯ, явление, выражающееся в зависимости физич. величин, выражающих определенное свойство твердого или жидкого тела от направления, вдо.11Ь к-рого эта величина (коэфициент теплопроводности, показатели преломления, прочность на разрыв и др.) измеряется. Тела, обладающие А., называются анизотропными в противоположность изотропным, в к-рых свойства по всем направлениям одинаковы. Анизотропная среда однородна (гомогенна) в том случае, когда зависимость физич. свойств от направления одинакова в различных точках среды. Для данного направления все физич. свойства однородного тела не зависят от положения элемента объема, длп к-рого онп исследуются. Однородная А. может быть обусловлена строением тела, наличием кристаллич. структуры или резко выраженной асимметрией его молекул, легко ориентирующихся под влиянием внешнего или собственного поля (жидкие кристаллы, кристаллич. жидкости). А. (например местная) возникает также в результате односторонних деформаций тела (возникновение неравномерно распределенных внутренних напряжений при растяжении, одностороннем сдавливании тел, закалке, вообще при разных видах механической обработки). Поверхностный слой всякого тела вызывает местную А., делая тело неоднородным вблизи поверхности раздела с окружающей средой. При этом А. поверхностного слоя выражается в том, что физич. свойства по тангенциальным направлениям (лежащим в поверхности) отличны от свойств в направлении, нормальном ij поверхностному слою. Тела м. б. анизотропны в отношении одних свойств (напр, оптических) и изотропны относительно других (напр, упругих). Кристаллы всех систем кроме кубической оптически анизотропны. В таких кристаллах по каждому направлению (за исключением направления. лучевых осей) идут два луча, оба поляризованных во взаимно перпендикулярных плоскостях. Оба эти луча распространяются в кристалле с разной скоростью. А. может быть исследована по характеру зависимости физич. свойств напр, тепловых или механических) в данной среде. В прозрачных телах для изучения А. удобнее исследовать оптич. свойства (напр, по отношению к поляризованному свету). Наиболее полным методом исследования является исследование структуры (рентгено- или электро-нографич. анализ), обусловливающей А.  [c.388]

После того, как в трех последних главах мы занимались движением электронов, обратимся теперь к движению атомов (ионов) решетки. Динамика кристаллической решетки играет большую роль во многих областях физики твердого тела. Тепловое дви-н<ение заставляет ионы решетки колебаться вокруг своих положений равновесия. Удерживаюш,ими силами являются силы химической связи. Все упругие свойства, сжимаемость и распространение акустических волн определяются этими силами. Эти свойства в большинстве случаев описываются в рамках континуальной теории, в которой не учитывается атомная структура.  [c.129]

Особое место в кузнечно-штамповочном оборудовании занимают гидравлические устройства для листовой штамповки, где в качестве энергоносителя используют детонационную волну, порожденную электрическим разрядом в жидкости. Эти устройства не имеют типовой структуры КШМ - у них нет исполнительного органа в виде твердого тела, двигательного и передаточного механизмов в обычном понимании. Тем не менее такие устройства следует классифицировать как технологические машины, поскольку производится механическое движение рабочего тела (жидкости) для изменения формы объекта труда - обрабатываемой заготовки. Отсутствует типовая структура и в магнитноимпульсных установках, основанных на использовании электромеханических сил взаимодействия магнитного поля с электрическим током в металлической заготовке. В термопрессах, использующих для технологического воздействия тепловое расширение - сжатие колонн, которые разогреваются индуцированными токами, - нет двигательного и передаточного механизмов. Как видно, во всех этих устройствах для осуществления движения, деформирующего заготовку, используют электрическую энергию и особенности физических свойств рабочего тела, деталей конструкции или заготовки. Поэтому такие устройства объединяют в класс электрофизических КШМ.  [c.10]


Механизм высокоэластичной деформации [22]. Высокоэластичное состояние является промежуточным физическим состоянием между жидким (текучим) и стеклообразным, поэтому в комплексе механических свойств эластомера можно обнаружить элементы свойств жидкого и стеклообразного тела. В простой жидкости молекулы легко перемещаются тепловым движением. Внешнее силовое поле дает преимущество перемещению в направлении поля, что приводит к возникновению макроскопически наблюдаемого течения жидкости. Развитие высокоэластичной деформации можно рассматривать как течение звеньев или групп звеньев макромолекулы под влиянием внешних сил. С этой точки зрения полимеры (и, в частности, эластомеры) близки к жидкостям. Однако, поскольку все звенья в цепи связаны, а цепи сшиты в пространственную сетчатую структуру, то их течение ограничено связями и не является необратимым. Это соответствует твердому состоянию тела. Таким образом, при высокоэластичном состоянии возможность свободного перемещения имеют только участки цепных макромолекул при отсутствии заметных перемещений макромолекулы в целом. Тепловые движения п эиводят к многочисленным-конформациям этих участков, при которых расстояние между узлами цепей пространственной сетки намного меньше контурной длины участков цепи. Под действием внешней силы цепи изменяют свои конформации, причем проекции участков в направлении деформации удлиняются (или сокращаются). Деформация развивается путем последовательного перемещения сегментов этих участков из одного положения в другое, т. е. протекает во времени [4, 49]. Этим объясняется отставание высокоэластичной деформации от изменения внешней нагрузки. Процесс перегруппировки сегментов сопровождается преодолением внутреннего трения и, следовательно, рассеянием механической энергии. После прекращения действия внешней силы участки цепи под действием теплового движения вновь вернутся в наиболее вероятное состояние сильно свернутых конформаций. По терминологии термодинамики переход в более вероятное состояние системы связан с возрастанием энтропии. Поэтому эластомеры имеют энтропийный характер деформации деформация связана с уменьшением энтропии, а возвращение в начальное положение — с увеличением ее. На основе законов термодинамики разработана статистическая (кинетическая) теория деформации и прочности полимеров, устанавливающая связь механических характеристик с температу-4 51  [c.51]


Смотреть страницы где упоминается термин Структура в тепловые свойства твердых тел : [c.2]    [c.243]    [c.1301]    [c.103]    [c.473]   
Смотреть главы в:

Физика твердого тела Изд2  -> Структура в тепловые свойства твердых тел



ПОИСК



Пар Тепловые свойства

Свойства с а-структурой

Структура твердых тел

Тепловые свойства твердых тел



© 2025 Mash-xxl.info Реклама на сайте