Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Задача Лагранжа. Множители Лагранжа. Уравнения Эйлера

Общее решение. Необходимым условием экстремума одной из сумм (9.15), (9.16),.. . при данной формулировке задачи является удовлетворение требованиям теоремы правила множителей и, как следствия ее, соблюдение уравнений Эйлера — Лагранжа. Согласно теореме правила множителей и ее следствию [111] при наличии экстремума одной из сумм (9.15), (9.16),.. . необходимо, чтобы между узловыми точками соблюдались уравнения Эйлера — Лагранжа  [c.179]


Это изопериметрическая задача, в которой уравнения Эйлера составляются с учетом множителей Лагранжа через промежуточную функцию  [c.308]

Это уравнение вместе с уравнениями связей (29) составляют замкнутую систему для нахождения решений задачи Лагранжа. Уравнение (31) можно получить методом множителей Лагранжа. Вводя новый лагранжиан S — L—l K.f, и считая Xi.....%т дополнительными координатами, сведем задачу Лагранжа к вариационной задаче без ограничений. Если в новой задаче не принимать во внимание уравнения связей, то уравнения Эйлера—Лагранжа будут иметь вид  [c.45]

Задача. Проверьте, что уравнение Нф = Еф при условии J фф с1х = 1 можно получить, как уравнение Эйлера - Лагранжа в задаче на условный экстремум функционала 31[ф,ф ] = = ф Нф(1х при условии / фф (1х = 1. При этом Е можно рассматривать как множитель Лагранжа в этой задаче.  [c.119]

Соотношение (111.67b) является четвертым алгебраическим интегралом дифференциальных уравнений (III. 12) и (III. 14), не зависящим от времени. По теореме о последнем множителе Якоби задача сводится к квадратурам. Отметим, что задача С. В, Ковалевской приводится к квадратурам гиперэллиптического типа. Характер движения тела в случае Ковалевской гораздо сложнее, чем в случаях Эйлера и Лагранжа. В то время как в упомянутых двух классических случаях общие свойства движения твердого тела исследованы очень подробно, этого нельзя сказать о случае Ковалевской. Трудности, связанные с анализом движения тела в последнем случае, заставляют даже обратиться к экспериментальному изучению проблемы ).  [c.453]

В уравнения движения время t явно не входит. Исключая имеем пять уравнений, для которых найдены четыре первых интеграла. Согласно теории последнего множителя ) задача сводится к квадратурам. С. В. Ковалевская доказала, что кроме четырех случаев — Эйлера, Лагранжа, полной кинетической симметрии А = В = С и ее — нет случаев, когда общее решение уравнений движения является мероморфной функцией в комплексной плоскости переменного t.  [c.197]

Уравнения Эйлера выведены для условий, когда режимные ограничения отсутствуют. При наличии ограничений в форме неравенств уравнения Эйлера будет удовлетворяться лишь в тех зонах, где ограничения не сказываются (в зонах с наличием ограничений уравнения Эйлера превращается в неравенства). Кроме того, согласно вариационному исчислению, при наличии ограничений в форме неравенств, должны дополнительно соблюдаться так называемые уравнения трансверсальности. Последние уравнения отражают условия наилучшего сопряжения линий оптимального режима (экстремалей) с линиями рел<имных ограничений в зонах, где режимные ограничения в форме неравенств сказываются. Число уравнений трансверсальности равно числу указанных точек сопряжения экстремалей, поэтому в сложных задачах число уравнений трансверсальности может быть очень большим. Кроме того, заранее не известны точки сопряжения экстремалей, и приходится записывать уравнения трансверсальности для всех возможных точек сопряжения экстремалей. В силу этого для сложных задач практический учет ограничений в форме неравенств методами классического вариационного исчисления невозможен, и поэтому приходится искать иные решения. Учет ограничений в форме равенств в классическом вариационном исчислении возможен с помощью известных множителей Лагранжа.  [c.36]


Общий метод решения задачи о движении твердого тела. Уравнения Эйлера. Весь аппарат, необходимый для решения задачи о движении твердого тела, нами практически уже получен. В некоторых случаях, когда на это тело наложены не-голономные связи, нам потребуется применить специальные приемы, чтобы учесть их. Так обстоит дело, например, в том случае, когда на тело наложена связь качения , которая может быть учтена с помощью введения неопределенных множителей Лагранжа, как это делается в 2.4. Если, однако, исключить эти специальные случаи, то, как правило, нам придется иметь дело только с голономными и консервативными системами, а движение таких систем вполне определяется их лагранжианом. Если рассматриваемое тело является свободным, то нам потребуется полная система из щести обобщенных координат TpeJ<  [c.177]

Таким образом, существенным недостатком классического вариационного исчисления является практическая невозможность учета в сложных задачах ограничений в форме неравенств. В современной математике разработан ряд методов учета таких ограничений—метод штрафных функций, методы возможных направлений (проекционные методы), метод модифицированных множителей Лагранжа, принцип максимума Понтрягина. Первые два метода, используемые в данной работе, будут рассмотрены ниже более подробно. Анализ метода модифицированных множителей Лагранжа применительно к энергетическим задачам проведен в работах [Л. 47, 48]. Исследования по применению принципа максимума Понтрягина к задаче оптимизации долгосрочных режимов ГЭС только еще начаты в работах Л. С. Беляева, Далина, Шена, Нариты [Л. 48, 95, 96]. Авторы отмечают большую перспективность этого метода решения задачи. Исследования но применению принципа максимума Понтрягина, по-видимому, позволят дать объективную оценку этому методу. В настоящей работе этот метод не рассматривается. Р ешение задачи на основе интегрирования дифференциальных уравнений Эйлера не получило в настоящее время распространения, хотя и не доказано, что оно бесперспективно.  [c.37]

Воспользуемся для решения этой вариационной задачи с интегралом f w s)ds и интегральным условием (3.46) f w s)ds = = onst, методом множителей Лагранжа для функции w t) Xw t) с постоянным множителем Л. Тогда получим решение уравнения Эйлера 2w t) + Л = О, откуда вытекает, что w = onst, Vt G [О, tp].  [c.99]

Здесь ах,..., —гладкие ковекторные поля на N, линейно независимые в каждой точке, и т < Следуя методу множителей Лагранжа, введем дополнительные координаты Л1,...,Лт и лагранжиан = а -4). Можно показать (см., например, [19]), что экстремали рассматриваемой вариационной задачи находятся из следующей системы дифференциальных уравнений Эйлера — Лагранжа  [c.25]

В результате исследований, посвященных принципу максимума и аналогичным ему критериям классического вариационного исчисления, были разработаны общие приемы построения необходимых признаков оптимальности, по-видимому, вполне достаточные для большинства типичных экстремальных задач о программном управлении. Как правило, в настоящее время решение этого вопроса не вызывает принципиальных затруднений, во всяком случае, если речь идет о минимизации (максимизации) функционалов вида (8.2) и подобных им. При встрече с новым кругом задач этого типа обычно удается учесть дополнительные обстоятельства и составить соответствующие необходимые условия экстремума по широко известным теперь общим рецептам. Однако составление дифференциальных уравнений, выражающих необходимые условия оптимальности, является лишь первым, хотя и чрезвычайно важным этапом в решении конкретных проблем. Следующий этап состоит в интегрировании этих уравнений с учетом краевых условий, которым должно удовлетворять искомое оптимальное движение. Эта краевая задача, связанная с необходимостью привести управляемый объект в заданное состояние, остается до сих пор трудной проблемой. Дело заключается в следующем. Необходимые признаки оптимальности, выражаемые дифференциальными уравнениями Эйлера — Лагранжа для координат Х1 1) и множителей Лагранжа Я-г ( ) (или для имеющих тот л е смысл координат г) г 1) вектора -ф ( ) в случае принципа максимума), определяют внутренние свойства оптимальных движений, описывая их локальное поведение в окрестности каждой точки на данной траектории. В силу этих свойств каждое оптимальное движение развертывается во времени совершенно определенным образом, отталкиваясь от начальных условий х ( о) и ( о)-Начальные данные ( о) обычно задаются по условиям задачи. Величины ( о) ("Фг ( о)) определяют по условиям принципа максимума направление в пространстве х , в котором уходит оптимальное движение х (t) из точки X to). Трудность состоит в выборе величин (Ьо), которые обеспечивают прицеливание оптимального движения как раз в заданное конечное состояние X 1х) (или на заданное многообразие М конечных состояний и т. п.). Эффективное преодоление этой трудности, как правило, тормозится невозможностью получения явной зависимости между величинами х ( 1) и А, ( о) вследствие неинтегрирз емости в замкнутой форме дифференциальных уравнений задачи. Каждая новая серия соответствующих краевых задач, особенно, если речь идет о нелинейных объектах, требует обычно для своего разрешения подбора специальных вычислительных алгоритмов. Лишь для отдельных классов задач выведены некоторые закономерности, облегчающие их конкретное решение.  [c.192]


Принцип максимума и методы классического вариационного исчисления, рассмотренные выше, приспособлены прежде всего для решения задач о программном оптимальном управлении. Соответствующие дифференциальные уравнения, описывающие оптимальное движение и множители Лагранжа Я, (г), или вектор-функцию г) (0> являются уравнениями типа уравнений Эйлера — Лагранжа и Гамильтона. Они определяют управление в виде функции от времени . Во многих случаях, однако, ставится задача о синтезе оптимальной системы, работающей по принципу обратной связи, и тогда требуется, например, определение управления и в виде функции от текущих фазовых координат Хг 1) объекта. Здесь, конечно, возможен следующий естественный путь решения задачи. Для реализовавшегося в данный момент времени 1 х состояния х х х) решается вспомогательная задача о программном управлении (0[т, а (т)] (i>т), которое минимизирует тот же функционал и при тех же концевых условиях и ограничениях, какие заданы в исходной проблеме синтеза. Далее полагается, что [т, д (т)] = (т )[т, я (т)]7 и такие значения и = [т, X (т) ] при каждом = т > о используются в ходе реального процесса управления. В случае, если алгоритм вычисления ( )[г, д (т)] путем решения вспомогательных программных задач можно осуществлять значительно быстрее, чем протекание самого процесса х (т), такой путь может оказаться целесообразным, тем более, что по ходу процесса при т > 0 приходится на деле лишь корректировать величины (т)[т, а не решать в каждый момент = т заново всю программную задачу. Здесь, правда, еще остается нелегкая чисто математическая проблема, < остоящая в доказательстве того, вообще говоря, правдоподобного факта, что найденные таким путем функции [т, х (т)] при подстановке и = = [ , X ( )] в исходные уравнения (2.1) действительно разрешают проблему синтеза оптимальной системы. Это строгое обоснование того факта, что описанный переход [т, а (т) ] = (т)[т, а (т)] действительно дает оптимальный синтез, наталкивается, например, на следующую  [c.202]

Как и в случае конечномерных динамических систем, в области задач об оптимальном управлении системами с распределенными параметрами сохраняют полную работоспособность усовершенствованные методы классического вариационного исчисления. При этом и здесь основное внимание было уделено составлению необходимых условий минимума для экстремальных задач со связями, трактуемыми как проблема Майера — Больца. Главным образом это было сделано для задач, связанных с уравнениями эллиптического типа. Было показано, что в таких типичных задачах, возникающих из проблем оптимального управления, необходимые условия стационарности (уравнение Эйлера и естественные граничные условия, а также условия Вейерштрасса Эрдманна) составляются при помощи обычных приемов. Критерии опираются снова на множители Лагранжа которые здесь зависят уже обычно от пространственных координат, а соответствующие дифференциальные уравнения снова конструируются исходя из подходящих форм функции Гамильтона. Условия стационарности дополняются необходимым условием Вейерштрасса сильного относительного минимума. Разумеется, это условие, которое записывается через условие экстремальности функции Гамильтона на оптимальных решениях, имеет смысл, аналогичный соответствующему условию принципа максимума. Важно, однако, заметить, что при работе с модификациями классических методов вариационного исчисления в случае уравнений с частными производными проявляются некоторые новые черты. В результате получаются условия оптимальности, более сильные, нежели известные в настоящее время обобщения принципа максимума на системы, описываемые уравнениями в частных производных. Упомянутые черты проявляются, в частности, в связи с тем обстоятельством, что приращение минимизируемого функционала при изменении объемного управления (за счет варьирования от оптимального управления) в пределах области достаточно малой меры зависит не только от вариации управления и меры области, но также существенно определяется и предельной формой области варьирования. Таким образом, получается, что при изменении формы области, определяющей вариацию, могут, получаться более или менее широкие необходимые условия экстремальности. Как отмечено выше, эффект анизотропии варьирования пока был получен только классическими методами. Причины этого, по-видимому, различны некоторые работы, посвященные принципу максимума, относятся к таким задачам, где этот эффект вообще не проявляется, в других случаях эффект анизотропии исключался вследствие ограничения при исследованиях лишь вариациями специального вида. Полезно также заметить, что описываемый эффект анизотропии расширяет возможность управления и оптимизации в обширном классе случаев независимо от типа исходных уравнений. Эффективность классических методов вариационного исчисления была проверена на конкретных типах задач. В частности, таким путем была исследована задача об оптимальном распределении проводимости электропроводной жидкости (газа) в канале магнитодинамического генератора электрической энергии. Эта задача как раз доставляет пример вариационной проблемы, где эффект анизотропии варьирования играет существенную роль. Развитию классических методов исследования посвящены работы К. А. Лурье.  [c.239]

При помощи этих m уравнений можно исключить из уравнения (1) т из Зп вариаций 6х бу,, 6z и если после этого оставшиеся вариации положить независимыми друг от друга, то символическое уравнение (1) распадется на дифференциальные уравнения движения. Но это исключение было бы очень затруднительно и имело бы, кроме того, некоторые неприятные стороны во-первых, пришлось бы некоторые координаты предпочесть другим, и поэтому получились бы несимметричные формулы, а, во-вторых, для различного числа условных уравнений получалась бы различная форма результатов исключения, вследствие чего общность исследования была бы сильно затруднена. Все эти трудности преодолел Лагранж введением множителей (метод, который уже Эйлер часто употреблял в задачах de maximis et minimis ). Так как в уравнения (1) и (4) вариации 6х 6у dz, входят линейно, то исключение т из них можно произвести следующим образом. Умножаем уравнения (4) соответственно на множители 7, и,. . . и складываем их с (1) полученное уравнение назовем (а).  [c.304]


Рассматриваемая задача может быть также решена методом Лагранжа, несмотря иа то, что кинематические уравнения содержат производные по временн определяющих параметров. Чтобы сделать это, прибегнем к методу неопределенных множителей (см. т. 1, гл. VII). Пусть оси координат будут те же, что и раньше. Пусть ОС — тот диаметр, который был вертикален во время вращения шара на вершине поверхности, G/4, GB — два других диаметра, образующих вместе с диаметром G систему прямоугольт.1х координат, закрепленную в шаре. Пусть положение этих осей относительно неподвижных осей задается углами Эйлера 0, ф, г з. Тогда живая сила шара будет  [c.204]


Смотреть страницы где упоминается термин Задача Лагранжа. Множители Лагранжа. Уравнения Эйлера : [c.49]    [c.170]    [c.47]   
Смотреть главы в:

Справочное руководство по небесной механике и астродинамике Изд.2  -> Задача Лагранжа. Множители Лагранжа. Уравнения Эйлера



ПОИСК



Задача Лагранжа

Задача Эйлера

Лагранжа - Эйлера уравнения уравнения Эйлера-Лагранжа

Лагранжа Эйлера

Множители Эйлера — Лагранжа

Множитель

Множитель Лагранжа

Уравнение Эйлера

Уравнение Эйлера — Лагранжа

Уравнение с множителем

Уравнения Лагранжа

Эйлер

Эйлера лагранжев

Эйлера эйлеров



© 2025 Mash-xxl.info Реклама на сайте