Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Плавление и перенос металла в дуге

Плавление и перенос металла в дуге  [c.14]

ПЛАВЛЕНИЕ ЭЛЕКТРОДНОЙ ПРОВОЛОКИ И ПЕРЕНОС МЕТАЛЛА В ДУГЕ  [c.11]

Напряжение дуги при установившемся режиме не зависит от силы тока, а зависит только от длины дуги, которая при сварке плавящимся электродом может многократно меняться, что связано в значительной степени с процессами плавления и переноса металла (см гл. II, п. 6).  [c.14]


Плавление и перенос электродного металла. Электродный металл при дуговой сварке плавится за счет тепла, выделяемого на конце электрода в приэлектродной области дуги, тепла, попадающего из столба дуги, нагрева вылета электрода при прохождении сварочного тока от токопровода и до дуги. Чем больше вылет электрода, тем больше его сопротивление, и тем больше выделяется тепла.  [c.20]

Металлургические реакции между жидким металлом, газами и шлаком при сварке протекают в период плавления электрода и накопления капли на его конце, переноса капли через дуговой промежуток и непосредственно в сварочной ванне. При этом температура и поверхность контактирования металла, газа и шлака изменяются, вследствие чего изменяется скорость, а иногда и направление протекания реакций. Поэтому рассматриваются особенности протекания реакций в периоды накопления и переноса капли через дугу и пребывания жидкого металла в сварочной ванне на различных расстояниях от дуги.  [c.47]

Процесс плавления и переноса электродного металла на изделие под воздействием теПла дуги происходит непрерывно во время ее горения в виде капель и последовательно повторяется в порядке, указанном на рис. 3.3. Как видно из рис. 3.3, а и 3.3, б, после образования капли расплавленного металла происходит ее сближение с изделием и затем кратковременное короткое замыкание и переход капли на изделие, после чего возобновляется горение дуги (рис. 3.3, в), и процесс переноса повторяется. В зависимости от полярности сварочного тока, состава электродного металла и покрытия величина капель меняется от 0,1 до 3—  [c.39]

При аргоно-дуговой сварке швов в вертикальном, горизонтальном- и потолочном положениях практически невозможно добиться направленного переноса металла. Зачастую при сварке в диапазоне докритических токов образовавшаяся на электроде крупная капля (при обрыве дуги либо при коротком замыкании) отделяется и летит вниз, не попадая в ванночку. В последние годы был разработан способ активного воздействия на процессы плавления и переноса электродного металла — так называемый способ импульсно-дуговой сварки.  [c.79]

В дуговой электросварке сочетаются элементы металлургических и термических процессов, протекающих в специфических для сварки условиях. Основной металл и электрод плавятся в атмосфере высокой температуры вольтовой дуги, вследствие чего химическая активность перегретого металла и окружающей газовой среды значительно повышаются. Каплеобразный перенос электродного металла в вольтовой дуге способствует развитию контактной реакционной поверхности между перегретым (частично парообразным) металлом и окружающей его газовой средой. При этом некоторые элементы, входящие в состав электродного металла, легко окисляются и частично испаряются (марганец). Высокая концентрированность нагрева и небольшой объём сварочной ванны обусловливают быстрый отвод тепла большой массой холодного основного металла. Кратковременность процесса плавления и последующей кристаллизации затрудняет регулирование химических реакций, дегазацию и удаление неметаллических включений.  [c.303]


В зоне электродуговой сварки происходят плавление металла, перенос электродного или присадочного металла, образование сварочной ванны с зоной термического влияния, кристаллизация сварочной ванны и фазовые изменения в зоне термического влияния. Эти процессы влияют на производительность сварки, потерю металла, устойчивость горения дуги и другие факторы.  [c.248]

Поверхностное натяжение способствует переносу металла с электрода на изделие при применении короткой дуги. Сила давления газов, возникающих при плавлении электрода, также помогает процессу переноса капли с электрода на деталь. Это также очень важно при потолочной сварке. Электрический ток, проходящий по электроду, создает вокруг электрода магнитное силовое поле, которое оказывает сжимающее действие на жидкую каплю металла и образует шейку при его расплавлении (пинч-эффект). Электромагнитные силы способствуют переносу капли металла при всех положениях шва в пространстве с электрода на изделие.  [c.459]

Основы технологии. Сварку ведут постоянным током нормальной полярности. Обмазка электрода обладает хорошей электропроводностью, поэтому дуга горит попеременно между металлическим стержнем и изделием и между обмазкой и изделием. В первый момент происходит плавление электродного металла и перенос его на изделие. Когда металлическая дуга удлинится и ее сопротивление увеличится, а обмазка останется в виде чехольчика, дуга возникает между обмазкой и изделием.  [c.549]

С. М. Гуревич описал [42, с. 262] новый метод сварки плавящимся электродом — импульсно-дуговую сварку, которая основана на управлении магнитодинамическими процессами в дуге, в частности капельным переносом металла при плавлении электродной проволоки. Наложение мощных кратковременных импульсов тока на дугу постоянного тока делает формирование капли на конце электрода регулируемым. Принудительный, направленный перенос электродного металла при сварке титановых сплавов значительно улучшает формирование швов, выполняемых полуавтоматом, и делает возможной полуавтоматическую сварку в вертикальном и даже потолочном положениях при сохранении высокой стабильности качества соединений из металла средних и больших толщин.  [c.85]

Введение в проволоку, покрытие или флюс веществ, повышающих катодное падение напряжения (а следовательно, и номинальное напряжение дуги), способствует повышению скорости плавления проволоки на прямой полярности. Изменение состава защитного газа оказывает сравнительно небольшое влияние на скорость плавления проволоки. Нанесение на сварочную проволоку небольших количеств солей щелочных или щелочноземельных металлов резко понижает скорость плавления катода. Это явление иногда используется для так называемого активирования проволоки с целью замедления скорости плавления и получения мелкокапельного переноса металла на прямой полярности.  [c.71]

В следующий момент, при принудительном отходе электрода от изделия, перемычка разрывается и возникает дуговой разряд. В период дугового разряда происходит плавление основного и электродного металлов и перенос жидкого электродного металла на изделие. По мере отхода конца электрода от изделия дуга растягивается и обрывается. Продолжительность горения дуги может изменяться в зависимости от характеристики источника питания. Дойдя до крайнего положения, электрод начинает снова приближаться к изделию, пока вновь не наступит короткое замыкание. Далее процесс повторяется. Для охлаждения детали и защиты сварочной ванны от окружающего воздуха на деталь через специальные сопла подается струя жидкости (обычно раствор кальцинированной соды или 25%-ный раствор технического глицерина в воде). Возможен процесс с флюсовой защитой. Так как длительность существования дугового разряда составляет всего —20% времени общего цикла и чередуется с периодами полного отсутствия выделения теплоты (период холостого хода) и периодом малого его выделения (период короткого замыкания), при вибродуговом процессе обеспечиваются неглубокий  [c.118]


Для управления процессом переноса металла на основной режим сварки иногда накладывают электрические импульсы, параметры которых (ток, напряжение, мощность) изменяются во времени по определенной программе. В этом случае параметры режима выбирают таким образом, что теплота, выделяемая дугой, питаемой от основного источника в промежутке между импульсами, недостаточна для плавления электрода при заданной скорости подачи. Вследствие этого длина дугового промежутка уменьшается. Во время действия импульса тока образуется капля металла и возрастает величина электродинамической силы, сжимающей перешеек капли у проволоки и отбрасывающей каплю строго в направлении оси электрода. Скорость плавления электрода во время импульса больше, чем скорость его подачи, вследствие чего длина дуги восстанавливается.  [c.383]

В момент короткого замыкания сварочной цепи напряжение резко падает до нуля, а сила тока быстро возрастает до максимального значения. При разрыве цепи напряжение между электродами мгновенно повышается до 24—30 В и возникает кратковременный дуговой разряд. Происходит оплавление металла проволоки, оставшегося на поверхности детали после короткого замыкания, плавление электрода и перенос капель расплавленного металла на поверхность детали. При дальнейшем увеличении электродного промежутка дуга гаснет, так как напряжение холостого хода источника тока становится недостаточным для поддержания стабильного дугового разряда. Затем цикл повторяется. При прерывистом процессе из-за высокой плотности тока, возникающей в момент размыкания цепи, ухудшается устойчивость процесса, увеличиваются потери металла на разбрызгивание из-за больших холостых ходов.  [c.241]

В следующий момент, при отходе электрода от изделия, перемычка разрывается и возбуждается дуга. В момент горения дуги происходит плавление основного и электродного металлов и перенос жидкого электродного металла на изделие. Затем цикл, состоящий из короткого замыкания, дугового разряда и холостого хода, повторяется. Так как длительность существования дуги невелика и составляет 20% всего цикла, провар основного металла получается неглубоким, с небольшой зоной термического влияния.  [c.10]

При сварке плавящимся электродом на его конце под действием высокой температуры происходит плавление металла, образование капли, отрыв и перенос ее на изделие. В зависимости от размера и скорости образования капель можно различать капельный и струйный перенос (рис. 16). При ручной сварке в виде капель переносится до 95% электродного металла остальные 5% — брызги и пары, значительная часть которых осаждается на изделии. Диаметр капель и скорость их образования зависят от вида дуговой сварки, диаметра электрода, силы тока, длины дуги и других условий.  [c.19]

При сварке плавящимся электродом, под действием высокой температуры, на его конце происходит плавление металла, образование капли, ее отрыв от электрода и перенос на металл изделия. При ручной сварке в виде капель переносится до 95% электродного металла, некоторая его часть превращается в пары и брызги (рис. 1.8). Диаметр капель и скорость их образования зависят от силы тока, диаметра электрода, длины дуги и ряда других условий. При сварке покрытыми электродами большинство капель окутано в оболочку из шлака, образующегося при плавлении покрытия, поэтому при прохождении они не замыкают дуговой промежуток. Однако короткое замыкание дугового промежутка некоторыми каплями все же происходит, что приводит к кратковременным падениям напряжения и скачкам сварочного тока. Для стабильности процесса горения дуги важна способность трансформатора к быстрому восстановлению тока и напряжения. В сварочной дуге происходит нелинейное распределение температуры и падение напряжения, зависящих от силы тока.  [c.12]

При сварке плавящимся электродом на его конце под действием сжимающих электромагнитных сил и высокой температуры происходят плавление металла, образование капли, отрыв и перенос ее на изделие. В зависимости от размера и скорости образования капель различают капельный и струйный переносы металла (рис. 6.4). Диаметр капель и скорость их образования зависят от вида дуговой сварки, диаметра электрода, силы тока, длины дуги и других условий.  [c.33]

При сварке покрытыми электродами перенос электродного металла осуществляется в основном крупными каплями различного размера. Внутри крупных капель могут находиться газы, выделяющиеся при плавлении покрытия и металла электрода. Под действием давления газов крупная капля разрывается, образуются более мелкие капли, брызги и частицы пара. К моменту попадания в ванну капли имеют неодинаковые размеры. При крупнокапельном переносе с короткими замыканиями и без них частота образования капель и их размер не остаются постоянными, что ведет к значительным колебаниям силы тока и напряжения дуги, осложняя получение высококачественного шва. Большую стабильность переноса электродного металла возможно получить лишь при струйном переносе (рис. 48, в). С увеличением силы тока размер капель уменьшается, а число их, образующееся в единицу времени, возрастает. Начиная с некоторой силы тока, которую называют критической, крупнокапельный перенос становится мелкокапельным. Мелкие капли образуют почти сплошную струю жидкого металла, которая переходит в сварочную ванну без коротких замыканий. При струйном переносе сила тяжести мелких капель невелика, что позволяет эффективно использовать этот процесс при сварке во всех пространственных положениях. Струйный перенос характеризуется гораздо меньшими колебаниями силы тока и напряжения, а также значительно меньшим разбрызгиванием, чем крупнокапельный. Однако при чрезмерно высоком значении силы тока стабильный струйный перенос переходит во вращательно-струйный, для которого характерно повышенное разбрызгивание, непостоянство длины дуги, напряжения и силы тока. Таким образом, стабильный струйный перенос существует лишь в некотором диапазоне значений силы тока, о чем и следует помнить при выборе параметров режима.  [c.90]


Эффективная (действующая) мощность дуги всегда меньше полной ее мощности, так как часть тепла расходуется на рассеивание в окружающую среду, разбрызгивание, плавление флюса и нагрев электрода (рис, 1). Часть тепла, израсходованного на нагрев электрода, возмещается переносом его с каплями расплавленного металла.  [c.4]

Схема процесса вибродуговой наплавки показана на рис. 163. Наплавляемая деталь 1, закрепленная в центрах, вращается с заданной скоростью. К детали подается роликами 4 электродная проволока 5 со скоростью ее плавления. Ток от генератора 7 подводится к детали и проволоке. В процессе на- Плавки электрод вибрирует с частотой 50—100 колебаний в секунду, в результате чего происходят частые короткие замыкания электрода на изделие. Вибрация электрода осуществляется электромагнитным или механическим вибратором 6. В процессе горения дуги на конце электрода образуется капля жидкого металла, которая переносится на изделие в мо- мент короткого замыкания.  [c.299]

С увеличением силы сварочного тока при сварке электродной проволокой одного диаметра увеличиваются производительность сварки и глубина проплавления основного металла. Рост производительности сварки объясняется увеличением скорости плавления электродной проволоки и уменьшением разбрызгивания электродного металла. Например, при сварке проволокой диаметром 2,0 мм на токе 200 а разбрызгивание составляет 10%, а на токе 500 а — только 3%. Разбрызгивание уменьшается благодаря тому, что с увеличением значения Iсв и, следовательно плотности тока изменяется характер переноса электродного металла— металл переносится в виде более мелких капель. При большом сварочном токе дуга погружается в основной металл, и поэтому большее количество капель удерживается внутри глубокой сварочной ванны.  [c.108]

Установившийся процесс воздействия движущегося высокотемпературного источника нагрева (сварочной дуги) на проплавляемый металл приводит к образованию сварочной ванны (рис. 1.3). В ней одновременно совмещены процессы плавления, металлургической обработки, легирования, переноса вещества и кристаллизации [72, 151]. Объемы металла относительно малы и значительно перегреты по сравнению с температурой начала кристаллизации [39, ИЗ, 115, 126].  [c.13]

Толстые (качественные) электродные покрытия должны обеспечивать 1) устойчивость вольтовой дуги при заданном характере и предельных колебаниях сил тока 2) эффективную защиту металла шва от вредного воздействия атмосферного воздуха в процессе плавления и переноса электродного металла в дуге и кристаллизации металла шва 3) спокойное и равномерное расплавление электродного стержня и покрытия 4) требуемый химический состав наплавленного металла и его постоянство 5) благоприятные условия для непрерывного переноса металла в дуге, обеспечивающие максимально возможную при заданных условиях производительность дуги (коэфициент наплавки) 6) требуемую глубину провара 7) дегазацию металла шва в процессе его кристаллизации 8) правильное формирование шва (валика, слоя) под шлаком 9) быструю коалес-ценцию шлака, находящегося в виде частиц или эмульсии в расплавленном металле, и быстрое его всплывание на поверхность наплавленного слоя (валика) 10) физические свойства шлака, допускающие выполнение сварки при заданной форме шва и его положения в пространстве И) лёгкую удаляемость шлака с поверхности наплавленного слоя 12) достаточную для нормальных производственных условий прочность покрытия и сохранность его физико-химических и технологических свойств в течение заданного периода времени.  [c.297]

ПЕРЕНОС МЕТАЛЛА (при дуговой сварке) — процесс перехода расплавленного электродного металла в сварочную ванну (см. Крупнокапелъный перенос металла, Мелкокапельный перенос металла, Струйный перенос металла). При нагреве металл на конце электрода подплавля-ется, затем оплавившийся слой металла принимает форму капли с образованием у ее основания шейки. Поперечное сечение шейки с течением времени уменьшается. Это приводит к значительному увеличению плотности тока у щейки, вследствие чего капля отрывается от электрода с большой скоростью. Характер плавления и переноса электродного металла оказывает большое влияние на производительность сварки, ход металлургических процессов. От него зависят устойчивость дуги, потери металла, формирование щва и др.  [c.102]

При таком процессе сварки покрытия для чугунных электродов должны хорошо стабилизировать горение дуги, препятствовать выгоранию углерода и кремния из электродного металла в процессе его плавления и переноса через дуговой промежуток, легировать металл шва углеродом и кремнием. Поскольку сварка выполняется в горячем состоянии, компоненты покрытия не должны давать большого количества шлаков, которые затруд-  [c.133]

Как и при других способах сварки, необходимо, чтобы расплавленный металл электрода переходил в сварочную ванну беспрерывно мелкими каплями. При мелкокапельном переносе металла повышается стабильность горения дуги, уменьшается разбрызгивание и улучщает-ся внешний вид шва. Размеры капель уменышаются с увеличением плотности тока, поэтому при сварке применяют токи, обеспечивающие устойчивый (струйный) перенос металла в сварочную ванну. Электроды, которые содержат в своем составе или а поверхности которых нанесены тонкие слои окислов тория (Th), калщия (Са), цезия ( s) или бария (Ва), образуют при плавлении мелкокапельный перенос металла.  [c.13]

При сварке плавящимся электродом, так же как и при сварке неплавящимся электродом, вненгние магнитные ноля отклоняют дугу. Однако эффект от использования внешнего магнитного поля наблюдается при сварке длинной дугой и наиболее заметен при струйном переносе электродного металла. В этом случае расплавленный торец электрода колеблется синхронно с частотой внешнего магнитного поля. При поперечных колебаниях увеличивается гнирина нгва и уменьшается глубина нроплавления. В результате образующийся шов не имеет повышенной глубины про-плавления по его оси.  [c.57]

Общие сведения о дуговой сварке (ДС). Впервые дугу для сварки применил Н.Н. Бенардос в 1881 г. (для сварки он использовал дугу Между угольным электродом и металлом), а Н. Г.Сла-вяноБ в 1888 г.предложил дуговую сварку металлическим плавящимся электродом, которая нашла наибольшее применение среди других способов сварки При ручной дуговой сварке (РДС) плавящимся электродом (рис. 2.8) дуга между стержнем электрода 7 и свариваемым металлом / способствует их плавлению, капли 8 расплавляемого электрода переносятся в сварочную ванну 4 через дуговой промежуток. Вместе со стержнем плавится электродное покрытие 6, создавая газовую защиту вокруг дуги. 5 и жидкую шлаковую ванну, которая вместе с  [c.51]

Период плавления. Расплавление шихты в печи занимает основное время плавки. В настоящее время мйогие операции легирования и раскисления металла переносят в ковш. Поэтому длительность расплавления шихты в основном определяет производительность печи. После окончания завалки опускают электроды и включают ток. Металл под электродами разогревается, плавится и стекает вниз, собираясь в центральной части подины. Электроды прорезают в шихте колодцы, в которых скрываются электрические дуги. Под электроды забрасывают известь для наведения шлака, который закрывает обнаженный металл, предохраняя его от окисления. Постепенно озеро металла под электродами становится все больше. Оно подплавляет куски шихты, которые падают в жидкий металл и расплавляются в нем. Уровень, металла в печи повышается, а электроды под действием1 автоматического регулятора поднимаются вверх. Продолжительность периода расплавления металла равна 1—3 ч в зависимости от размера печи и мощности установленного трансформатора. В период расплавления трансформатор работает с полной нагрузкой и даже с 15 % перегрузкой, допускаемой паспортом, на самой вы-сокой ступени капряжения. В этот период мощные дуг не опасны для футеровки свода и стен, так как они закрыты шихтой. Остывшая во время загрузки футеровка  [c.182]


Напыление применяют в целях компенсации износа наружных и внутренних цилиндрических поверхностей деталей. Сущность способа напыления состоит в нанесении струей сжатого газа предварительно расплавленного металла на подготовленную изношенную поверхность восстанавливаемых деталей. При ударе о поверхность детали мелкие частицы распыленного металла деформируются, внедряются в ее поры и неровности, образуя покрытие. В зависимости от вида тепловой энергии, используемой в аппаратах для напыления, различают способы напыления газопламенный, элект-родуговой, высокочастотный, детанационный, плазменный. Газопламенное напыление осуществляется с помощью специальных аппаратов, в которых плавление напыляемого металла осуществляется ацителено-кислородным пламенем, а распыление — струей сжатого воздуха. В качестве напыляемого материала при газопламенном напылении используют также металлические порошки, поступающие в горелку с помощью сжатого воздуха (газа). Электро-дуговое напыление производится аппаратами, в которых металл плавится электрической дугой, горящей между двумя проволоками, а распыление — струей сжатого воздуха. Высокочастотное напыление происходит путем индукционного нагрева проволоки, как материала покрытия, сопровождаемого распылением струей сжатого воздуха. Головка высокочастотного аппарата имеет индуктор, питаемый от генератора тока высокой частоты и концентратор тока, который обеспечивает плавление проволоки на небольшом участке ее длины. При детонационном способе напыления, расплавление металла, его распыление и перенос на поверхность детали достигается за счет энергии взрыва смеси газов ацетилена и кислорода. Процесс напыления покрытий всеми применяемыми способами включает подготовку детали к напылению, непосредственно нанесение покрытия и обработку детали после операции напыления.  [c.387]

При многоэлектродной сварке электроды прихватывают к специальной пластине (гребенке), которую устанавливают в одноручковый электрододержатель с рукояткой, вынесенной в сторону от корпуса и сварочного кабеля. Медные формы применяют такие же, как и для одноэлектродной сварки. Для сварки труднодоступных стыковых соединений горизонтальных одно-, двух- и трехрядных стержней рекомендуются инвентарные медные призматические формы. Многоэлектродную сварку ведут на переменном токе. В начале сварки гребенку электродов располагают в зазоре между торцами свариваемых стержней и касанием ею дна формы возбуждают дугу и быстро переносят гребенку на нижнюю часть одного из стержней. После образования на дне формы небольшого количества жидкого металла, расплавляют нижнюю часть торца другого стержня, расположив затем гребенку вертикально, перпендикулярно оси стержней. В процессе сварки по мере плавления электродов гребенка постепенно опускается при плавных колебательных движениях вдоль оси стержней. После заполнения плавильного пространства гребенку располагают посередине зазора перпендикулярно поверхности жидкого металла. В процессе наплавки усиления шва электроды гребенки следует периодически погружать в жидкий шлак на 2—3 с, а затем поднимая, возбуждать дугу на 1—2 с. Операцию повторяют 8—10 раз. При сварке труднодоступных стыковых соединений однорядных стержней гребенку электродов располагают под углом 30° к вертикали. Если угол больше 30° и стержни расположены вплотную друг к другу, одновременно сваривают стыковые соединения всех стержней, расположенных в одной вертикальной плоскости, без наклона гребенки.  [c.202]

Существует три основных способа расцлавления металла перед его-нанесением на изделие посредством электрической дуги, сжиганием горючих газов, путем предварительного расплавления металла в особых-оосудах (тиглях). Струя сжатого воздуха распыляет капли жидкого металла на мелкие частицы и переносит их на изделие. Продолжительность-полета частиц металла до изделия составляет 0,002—0,003 сек. Таким образом, образование покрытия осуществляется в три этапа плавление, распыление и нанесение. Аппараты для нанесения покрытий называются металлизаторами. При их работе регулируется количество подаваемого материала, расход тепла на плавление, давление сжигаемого газа, напряжение и сила тока. В СССР применяются в основном электрические и газовые металлизаторы. В зависимости от назначения покрытия производится и выбор аппаратуры, производительность, режим работы и т. д.  [c.90]

При дуговой сварке плавящимся электродом в среде защитных газов шов образуется за счет проплавлепия основного металла и расплавления электродной проволоки. Размеры и форма шва зависят при этом не только от мощности дуги, но также и от нроцесса плавления проволоки, от переноса металла через дуговой промежуток и от взаимодействия газового потока и частггц металла, пересекающих дуговой промежуток, с ванной расплавленного метатла.  [c.436]

Наиболее прогрессивным способом сварки является сварка под слоем флюса, впервые изобретенная Н. Г. Славяновым. Развитие современной автоматической и полуавтоматической сварки под слоем флюса обязано трудам советских ученых и изобретателей академика Е. О. Патона, Д. А. Дульчевского, В. И. Дятлова, И. А. Блох, В. П. Демянцевича и огромному вниманию партии и правительства к этому вопросу. При сварке под слоем флюса, как и при ручной сварке открытой дугой, источником тепла служит электрическая дуга, образуемая между электродом и свариваемым металлом. Схема продольного разреза зоны сварки под слоем флюса показана на фиг. 49. Электрическая дуга плавит основной и электродный металл, а также флюс. Расплавленный флюс образует жидкий шлак, который изолирует от воздуха не только столб дуги, но и всю зону сварки. Расплавленный электрод и основной металл образуют ванну жидкого металла, который давлением струи газов дуги вытесняется назад. Под электродом образуется углубление или канавка с небольшим количеством жидкого металла на дне, не препятствующим плавлению основного металла. Расплавленный электродный металл в виде капель переносится в ванну и смешивается с расплавленным основным  [c.104]

Углекислый газ является не инертным, а активным, окислительным при высокой температуре он активно окисляет металл, что компенсируется повышенным содержанием раскислителей в электродной проволоке. Углекислый газ применим только для сварки плавяш,имся электродом. При сварке в углекислом газе в основном используется импульсно-дуговой процесс с принудительными короткими замыканиями и процесс с крупнокапельным переносом. Первый реализуется при сварке тонкими проволоками диаметром 0,5—1,4 мм путем управления скоростью плавления электрода изменениями мощности дуги. Соответствующий оптимальный подбор силы тока и напряжения, а также введение в сварочную цепь индуктивности обеспечивают стабильное импульсное горение дуги с периодическим переходом капель металла в ванну без значительного разбрыгивания.  [c.149]


Смотреть страницы где упоминается термин Плавление и перенос металла в дуге : [c.59]    [c.47]    [c.387]    [c.10]    [c.11]    [c.61]    [c.71]    [c.255]    [c.125]   
Смотреть главы в:

Основы сварочного дела Издание 4  -> Плавление и перенос металла в дуге

Сварка и резка металлов Издание 5  -> Плавление и перенос металла в дуге



ПОИСК



Вес дуги

Перенос металла

Перенос металла в дуге

Переносье

Плавление

Плавление металлов

Плавление электрода и перенос металла через дугу

Сыр плавленый

Тепловые свойства дуги. Плавление и перенос металла

Ток переноса



© 2025 Mash-xxl.info Реклама на сайте