Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Антифрикционные порошковые сплавы

Антифрикционные порошковые сплавы имеют низкий коэффициент трения, легко прирабатываются, выдерживают значительные нагрузки и обладают хорошей износостойкостью.  [c.428]

Антифрикционные порошковые сплавы. Применение порошковых сплавов для изготовления антифрикционных изделий (подшипников, втулок, вкладышей и др.), работающих при малых скоростях вращения вала и удельной нагрузке пе более 100 кПм.ч (1000 МПа), вместо компактных антифрикционных сплавов пмеет ряд преимуществ.  [c.510]


АНТИФРИКЦИОННЫЕ ПОРОШКОВЫЕ СПЛАВЫ  [c.243]

Антифрикционные порошковые сплавы имеют низкий коэффициент трения, легко обрабатываются, выдерживают значительные нагрузки и имеют хорошую износостойкость. Наибольшее применение получил материал ФМК-11.  [c.27]

Примеры применения порошковых сплавов тугоплавкая нить для ламп накаливания из вольфрама контакты и детали приборов из молибдена и других тугоплавких металлов антифрикционные подшипниковые сплавы из порошков железа и графита постоянные магниты из порошков железа, никеля, алюминия, кобальта твердые сплавы для режущих инструментов, фильеры из порошков карбидов вольфрама, титана и кобальта и т. д.  [c.130]

Пористые подшипники обладают хорошими антифрикционными качествами, но менее прочны чем сплошные и поэтому их нельзя применять при больших нагрузках, например, для шатунных и коренных подшипников двигателей. Пористый порошковый сплав вследствие своей мягкости может служить заменителем свинца при зачеканке водопроводных труб.  [c.421]

Подшипники, изготовленные из пористых сплавов, имеют высокую износостойкость, малый коэффициент трения и требуют небольшого количества смазки. Положительное влияние на антифрикционные свойства порошковых сплавов оказывает сульфидирование.  [c.214]

Помимо сплавов на медной основе, изготовленных методом порошковой металлургии, все большее распространение получают антифрикционные алюминиевые сплавы. Алюминиевые спеченные материалы используют в  [c.350]

Какие Вы знаете антифрикционные и фрикционные порошковые сплавы  [c.314]

Повышенные антифрикционные свойства и высокое сопротивление усталостным разрушениям обеспечивают новые триметаллические подшипники. Наиболее распространенные отечественные композиции трехслойных вкладышей состоят из стальной основы, промежуточного пористого медноникелевого или порошкового слоя и свинцового сплава, заполняющего поры промежуточного слоя и образующего рабочий поверхностный слой толщиной не более 100 мкм. Триме-таллы нашли широкое применение в автопромышленности (ГАЗ-53, ЗИЛ-130, ЗИЛ-375).  [c.358]

В зависимости от условий эксплуатации конструкционные порошковые материалы (КПМ) подразделяют на две группы материалы, заменяющие обычные углеродистые и легированные стали, чугуны и цветные металлы материалы со специальными свойствами — износостойкие, инструментальные, жаропрочные, жаростойкие, коррозионностойкие, для атомной энергетики, с особыми физическими свойствами (магнитными, электро- и теплофизическими и др.), тяжелые сплавы, материалы для узлов трения — антифрикционные и фрикционные и др. Физико-механические свойства КПМ при прочих равных условиях определяются плотностью (или пористостью) изделий, а также условиями их получения. По степени нагруженности порошковые детали подразделяют на четыре группы (табл. 7.1).  [c.174]


Сплавы, изготовляемые методом порошковой металлургии. Прессованием или прокаткой порошков на железной и медной основах и последующим спеканием удается изготовить различные пористые антифрикционные детали [46, 87 [. Такие детали перед установкой пропитывают маслом. Как правило, их используют при работе в условиях недостатка смазки, хотя они устойчиво работают и при обильной смазке (трение со смазочным материалом) [871. В качестве добавки к железным и медным пористым изделиям используют порошки твердых смазок графита, дисульфида молибдена, нитрида бора и др. Композицию на железной основе обычно составляют с графитом, причем от его сорта в значительной степени зависят механические и антифрикционные свойства. Составы наиболее распространенных пористых сплавов на железной, алюминиевой и медной основах и некоторые свойства их приведены в [81].  [c.180]

В качестве антифрикционных материалов применяют баббиты, бронзы, чугуны, алюминиевые, цинковые антифрикционные сплавы, порошковые материалы, пластмассы.  [c.226]

Особенности методов порошковой металлургии позволяют на основе железа, меди, алюминия и других металлов и сплавов получать антифрикционные композиционные изделия, удовлетворяющие требованиям условий работы узлов трения. В качестве присадок, выполняющих роль твердой смазки, в такие материалы вводят графит, сульфиды, фторопласты, оксиды.  [c.811]

В качестве антифрикционных сплавов применяют бронзы, антифрикционные чугуны, баббиты и порошковые подшипниковые материалы. Все указанные материалы, за исключением баббитов, рассматриваются в соответствующих разделах.  [c.147]

В курсовых проектах, выполняемых в техникумах, подшипники скольжения проектируют для опор валов редукторов в виде встроенных в корпус конструкций. Материал вкладышей выбирают из группы антифрикционных сплавов (табл. 9.26 и 9.27), порошковой металлокерамики (пористые бронзо- и железографит).  [c.223]

Впервые метод изготовления металлов и сплавов из порошков путем их прессования и спекания был разработан русскими инженерами П. Г. Соболевским, В. В. Любарским и в Англии Волластоном. В настоящее время этот метод находит все большее применение. Он до сих пор является единственным методом получения металлов, имеющих высокие температуры плавления, например таких, как вольфрам, титан, молибден, ниобий и др., а также особо чистых металлов. При помощи порошковой металлургии изготовляют контактные и магнитные сплавы для электротехнической и радиотехнической промышленности, антифрикционные, фрикционные и твердые сплавы для машиностроительной промыш ленности, различные детали машин. Методом порошковой металлургии можно получить как заготовки, так и изделия, имеющие точные размеры и сложную форму. Применение порошковых материалов позволяет исключить из технологических процессов изготовления деталей литье и обработку резанием. Порошковая металлургия является прогрессивным методом изготовления деталей.  [c.242]

В настоящее время разработано несколько композиций порошковых металлокерамических материалов, применяющихся для изготовления подшипников. Эти материалы успешно конкурируют с лучшими антифрикционными сплавами. К числу хорошо исследованных пористых металлокерамических подшипниковых материалов относятся железные, железографитовые бронзографитовые и др. [26].  [c.379]

Антифрикционные сплавы получают из порошков как черных, так и цветных металлов. Их применяют для изготовления поршневых колец автомобилей, самосмазывающихся подшипников и других деталей машин, работающих в условиях трения. После составления шихты и получения порошков металлов последние спрессовывают в штампах под различным для разных сплавов давлением (например, величина давления для железных порошков составляет 59—98 Мн м (600—1 ООО кГ/см ), а затем спекают при температуре, равной 0,7—0,9 температуры плавления основного металла. При высокой температуре нагрева в порошках протекает диффузия. Изменяя режимы прессования и спекания, можно получить антифрикционные сплавы различной степени пористости. В связи с этим порошковые антифрикционные сплавы подразделяют на пористые и биметаллические (состоящие из стальной основы и напрессованного металлокерамического слоя).  [c.213]


Наиболее существенной при эксплуатации изделий из антифрикционных порошковых сплавов является допустимая нагрузка. Так, для железографитов она допускается до 1000... 1500 МПа, а для бронзогра-фитов — в пределах 400...500 МПа.  [c.228]

Антифрикционные металлические порошковые материалы имеют низкий коэффициент трения, легко прирабатываются, выдерживают значительные нагрузки и обладают хорошей износостойкостью. Подшипники из порошковых сплавов могут работать без принудительного смазывания за счет выпотевания масла, находящегося в порах. К антифрикционным металлическим порошковым материалам относятся железографит и бронзографит.  [c.227]

Классификация подшипниковых сплавов. К числу подшипниковых сплавов относятся баббиты оловянные, свинцовые, кальциевые и алюминиевые, бронзы оловянистые, свинцовооловянистые и свинцовистые, порошковые сплавы -из железного или бронзового порошка с графитом, пропитываемые маслом, антифрикционные чугуны.  [c.455]

Порошковые антифрикционные материалы, изготовленные в основном на основе недорогих металлов и сплавов, используются в узлах трения (подшипники скольжения, поршневые кольца и т. п.), успешна заменяя собой дорогостоящие литые, в частности баббитовые, изделия. Замена литых подшипников порошковыми не только снижает себестоимость изделий, но также обеспечивает получение антифрикционных изделий с самыми разнообразными гетерогенными структурами, которые могут содержать износостойкую твердую основу и различные мягкие включения, нередко выполняющие роль сухой смазки. Особую роль в антифрикционных порошковых изделиях играет остаточная пористост ,, величина которой может достигать 50 % и более.  [c.811]

Порошковые сплавы на основе никеля и железа, а также их смеси обеспечивают высокую износостойкость напыленных деталей, но одновременно несколько повышают (на 15—20%) износ сопряженных деталей, изготовленных из мягких антифрикционных сплавов. Этот недостаток может быть устранен при применении порошковой смеси, состоящей из 80—85% стального порошка ПЖ-5М и 15—20% порошка ПГ-ХН80СР4, которая при плазменном напылении обеспечивает достаточно высокую износостойкость покрытия и в то же время не повышает износа сопряженных деталей из мялких антифрикционных сплавов.  [c.174]

При спекании порошкового сплава на основе меди легкоплавкое олово диффундирует в медь, образуя твердый раствор. Допустимые температура и давление для подшипников на медной основе примерно в 2 раза ниже, чем для сплавов на железной основе. Антифрикционные металлокерамические сплавы обладают хорошей теплопроводностью, но пониженными показателями прочности. Поэтому целесообразно применение тонких антифрикционных покрытий, наносимых на поверхность стальной детали. С этой точки зрения большой интерес представляет металлофторопластовый материал. В это.м случае на стальную ленту с тонким медным покрытием наносят слой бронзового порошка, который после спекания образует пористый слой, прочно соединенный с подложкой затем поры заполняются фторопластом. В дальнейшем из ленты вырубают заготовку, которую свертывают в подшипник. Такие подшипники могут работать в широко.м диапазоне температур, при больших давлениях, высокой  [c.447]

НАПЛАВКА — сварка плавлением, в процессе которой на поверхность детали наносится слой металла необходимого состава. Наплавочные работы выполняются как при ремонте, например для восстановления размеров изношенных деталей (восстановительная наплавка, ремонтная наплавка), так и при изготовлении новых изделий (наплавка слоев с особыми свойствами). В первом случае обычно стремятся по возможности приблизить металл наплавленного слоя к основному металлу по твердости и другим механическим свойствам. Второй вид Н. применяют, когда на поверхности изделия необходимо создать слой металла, резко отличающийся по своим свойствам от основного металла, например наплавка слоя, защищающего основной металл от воздействия внешней среды, создание антифрикционного слоя или слоя, улучшающего электрические свойства материала детали. Особенно широко используется наплавка твердых сплавов. Основные виды Н., как и виды собственно сварки плавлением, определяются используемым источником нагрева. Наибольшее распространение получила дуговая наплавка (см. Дуговая сварка), а также электрошлаковая и газовая (см. Электрошлаковая сварка. Газовая сварка). Дуговая наплавка может быть ручной (см. Ручная сварка), автоматической (см. Автоматическая сварка) и полуавтоматической (см. Полуавтоматическая сварка). Последние два варианта называются механизированной наплавкой. Различают дуговую наплавку металлическим электродом (см. Сварка металлическим электродом), дуговую наплавку угольным электродом (см. Паплавка зернистых и порошковых сплавов. Сварка угольным электродом), а также наплавку под флюсом (см. Сварка под флюсом) и наплавку в защитных газах  [c.85]

Третий раздел содержит сведения по составу, структуре и свойствам основных цветных металлов и сплавов на их основе. Приведены марки сплавов на основе алюминия, магния, титана, цинка, меди, никеля и указаны основные области их применения. С учетом экономической целесообразности широкого применения порошковых материалов даны характеристики материалов для подшипников скольжения, конструкционных, антифрикционных, фрикционных материалов, а также пористых фильтров тонкой 0ЧИСТЮ1 жидкостей и газов.  [c.3]

Антифрикционные спеченные материалы используются для изготовления деталей узлов трения (подшипников скольжения, распорных втулок, колец, торцевых уплотнений, шайб, подпятников) различных машин и механизмов. Ими заменяют дорогостоящие цветные подшипниковые сплавы (баббиты, бронзы, латуни), антифрикционные чугуны и стали, подшипники качения, что позволяет получить значительный экономический эффект благодаря экономии цветных металлов, снижению трудоемкости изготовления деталей, повышению производительности труда, сокращению расхода металла в стружку, высвобождению станочного парка, квалифицированных рабочих и производственных площадей. Основным преимуществом антифрикционных спеченных материалов, изготовленных методом порошковой металлургии, по сравнению с другими материалами аналогичного назначения является их более высокая надежность и длительный срок службы (в 1,5—10 раз), особенно в условиях ограниченной подачи смазки. Этому способствуют поры, образующиеся в материале при его изготовлении, которые пропитывают маслом. Масловпитываемость материалов пористостью 17—25% находится в пределах 1,0—3,0%.  [c.42]


Промышленность порошковой металлургии в настоящее время выпускает антифрикционные спеченные материалы на основе железа, меди и их сплавов, которые применяются в различных отраслях техники (тракторо- и сельхозмашиностроении, автомобильной промышленности, тяжелом энергетическом и транс-  [c.42]

Металлокерамические поршневые кольца изготовляют из антифрикционных пористых железографйтовых сплавов прессованием порошковой смеси с последующим спеканием. Полученные таким методом поршневые кольца обладают высокой износоустойчивостью, но недостаточной упругостью.  [c.474]

В отличие от обычных (литых) сплавов, получаемых сплавлением исходных составляющих компонентов, металлокерамикой называют сплавы, структура которых образована путем прессования и спекания металлических порошков (иногда с добавкой неметаллических материалов). Процесс изготовления порошков и образования из них металлокерамики носит название порошковая металлургия . Методы порошковой металлургии раскрывают дополнительные возможности производства ценных для машиностроения материалов. При этом большое значение имеет возможность получения порошков очень тонкой структуры и с высокой степенью чистоты. В результате прессования образуются полуфабрикаты для дальнейшей переработки, например, штабики для вытяжки нитей накаливания электроламп, или готовые изделия, как например, пластинки твердых сплавов. Получение непосредственно готовых изделий имеет свои преимущества, в частности, практически отсутствуют отходы. Однако вследствие больших давлений, потребных для прессования (порядка 6000 кг/сл ), размеры изделий ограничиваются. Усилия в порошке в отличие от жидкости распространяются неравномерно и поэтому возможно получать изделия со стабильными свойствами металлокерамики лишь простой геометрической формы. Вслед-ствии различной степени усадки порошков при прессовании затруднено получение илделий с точными размерами. Наибольшее практическое значение имеет изготовление методами порошковой металлургии твердых и тугоплавких сплавов, электроковтактных, фрикционных, антифрикционных и др5 гих материалов.  [c.165]

Двуслойные порошковые изделия могут быть получены не только способом прокатки, но и обычным прессованием. Порошковый материал наносят на компактный металл (на стальную ленту либо литую заготовку), затем прессуют и спекают или же проводят спекание под давлением. Так изготовляют фрикционные диски и различные антифрикционные детали. Иногда применяют спекание неспрессованного порошка и в насыпном виде. Пористый спрессованный порошковый материал во время спекания может быть пропитан легкоплавкими сплавами (свинцом, антифрикционными составами).  [c.135]

Методы порошковой металлургии дают возможность создавать путем спекания порошков сплавы со структурой, соответствующей структуре литых антифрикционных сплавов. Но наряду с этим возможно создание таких сплавов, которые не могут быть получены методом литья. Это пористые антифрикционные сплавы. Пористость их используют для заполнения нор минеральной смазкой. Такой подшипник или вкладыш из металлоке-  [c.137]

Наряду с пористыми антифрикционными материалами методами порошковой металлургии готовят компактные, непористые металлокерамические сплавы. Их производят главным образом в виде двух- и трехслойного металла, основу которого составляет металлическая лента или другая металлическая опора. Описание метода приготовления таких сплавов было дано на стр. 135. Б автомобильных, авиационных двигателях и дизелях для коренных и шатунных подшипников применяют триметал-лические (трехслойные) вкладыши. На стальную ленту наносят смесь порошков яз 60% меди и 40% никеля с последующим спеканием и пропиткой баббитом. Для подшипников, работающих в очень тяжелых условиях, применяют металлокерамические сплавы на основе карбидов вольфрама. Они отличаются чрезвычайно высокой износостойкостью и работают во много раз дольше обычных шариковых подшипников.  [c.139]

В электротехнике широкое применение находят материалы, представляющие собой сплавы металлов с неметаллами или сплавы несплавляющихся друг с другом металлов. Для изготовления таких материалов применимы лишь методы порошковой металлургии. Такова возможность производства металлографитовых материалов, таких как меднографитовые и бронзографитовые щетки для электрических машин, содержащие от 8 до 75% графита. Графит повышает антифрикционные свойства материала, препятствует окислению металла, входящего в состав композиции, и предохраняет материал щеток от приваривания к вращающимся деталям.  [c.145]

К числу подшипниковых сплавов относятся бронзы (оловянистые и свинцовистые), баббиты оловянистые, оловянносвинцовистые, свинцовистые, кальциевые и алюминиевые, антифрикционные чугуны и порошковые материалы.  [c.241]

К числу подшипниковых сплавов относятся бронзы (оловянистые и свинцовистые), антифрикционные чугуны и порошковые материалы. Наиболее распространенными подшипниковыми сплавами являются баббиты (оловянистые, оловянносвинцовистые, свинцовистые, кальциевые и алюминиевые). Они обладают высокой пластичностью, хорошей прирабатываемостью и низким коэффициентом трения.  [c.48]

Метод порошковой металлургии позволяет получать изделия из обычных металлов и сплавов и из так называемых композитных материалов (сложных смесей порошков металлов, сплавов и неметаллов). К таким изделиям относится подшипники, втулки из железа, железографита, смесей. медь — графит, бронза — графит фильтры из порошков меди, бронзы, нержавеющей стали. Порошковой металлургией получают изделия из антифрикционных материалов, представляющих сложные смсси на основе порошков медн, бронзы или железа с добавками графита, окиси кремния, асбеста п др. Из смеси порошков меди и графита изготавливают щетки для коллекторных электродвигателей, из смесей порошков меди или серебра с вольфрамом, молибденом. никелем — электрические контакты и другие изделия электротехнического и специального назначения. Все изделия из так называемых твердых сплавов — смесей карбида вольфрама или слож-  [c.138]


Смотреть страницы где упоминается термин Антифрикционные порошковые сплавы : [c.462]    [c.208]    [c.7]    [c.34]    [c.172]    [c.243]    [c.175]   
Смотреть главы в:

Технология металлов  -> Антифрикционные порошковые сплавы



ПОИСК



А* порошковые

Антифрикционность

Порошковые материалы Антифрикционные порошковые сплавы

Сплавы антифрикционные

Ч антифрикционный



© 2025 Mash-xxl.info Реклама на сайте