Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Антифрикционные порошковые

Антифрикционные порошковые сплавы имеют низкий коэффициент трения, легко прирабатываются, выдерживают значительные нагрузки и обладают хорошей износостойкостью.  [c.428]

ГОСТ 26802—86. Материалы антифрикционные порошковые на основе железа. Марки.  [c.179]

Антифрикционный порошковый материал — порошковый материал для производства изделий, от которых требуются низкие потери на трение.  [c.780]

АНТИФРИКЦИОННЫЕ ПОРОШКОВЫЕ МАТЕРИАЛЫ  [c.811]


Марки, состав и свойства антифрикционных порошковых материалов на основе железа по ГОСТ 26802-86  [c.811]

Условия работы и области применения антифрикционных порошковых материалов  [c.814]

Механические свойства антифрикционных порошковых материалов в большей степени зависят от дисперсности исходных порошковых ком-  [c.815]

Марки, состав и свойства антифрикционные порошковых материалов на основе меди по ГОСТ 26719-85  [c.815]

Из железных антифрикционных порошковых материалов можно указать (кроме пористого железа) следующие композиции железо  [c.329]

Антифрикционные порошковые сплавы. Применение порошковых сплавов для изготовления антифрикционных изделий (подшипников, втулок, вкладышей и др.), работающих при малых скоростях вращения вала и удельной нагрузке пе более 100 кПм.ч (1000 МПа), вместо компактных антифрикционных сплавов пмеет ряд преимуществ.  [c.510]

АНТИФРИКЦИОННЫЕ ПОРОШКОВЫЕ СПЛАВЫ  [c.243]

Изготовление антифрикционных порошковых материалов, в которых связующим компонентом служит высокополимерная смола. Такие материалы могут изготовляться путем полимеризации, если в качестве связки применяется термореактивная смола, и литьем, если связкой служит термопластичная смола. Смазывающие компоненты в этих материалах, как правило, твердые смазки нитрид бора, фталоцианин меди, молибденит, графит и др.  [c.64]

Композиционные антифрикционные порошковые материалы позволяют иметь равномерно распределенные включения нз веществ, играющих роль твердой смазки. К таким веществам относятся графит, сульфиды, пластмассы и некоторые другие соединения.  [c.254]

Марки, условия работы и назначение материалов антифрикционных порошковых на основе меди (ГОСТ 26719-85), предназначенных для деталей узлов тре-  [c.725]

Марки, условия работы и назначение материалов антифрикционных порошковых на основе железа (ГОСТ 26802-86), предназначенных для деталей узлов трения машин и механизмов, приведены  [c.725]

Марки и назначение материалов антифрикционных порошковых на основе меди  [c.726]

Марки, условия работы и области применения материалов антифрикционных порошковых  [c.727]

Антифрикционные порошковые сплавы имеют низкий коэффициент трения, легко обрабатываются, выдерживают значительные нагрузки и имеют хорошую износостойкость. Наибольшее применение получил материал ФМК-11.  [c.27]

Прокатка — один из наиболее производительных и перспективных способов переработки порошковых материалов. Порошок (рис. 8.3, а) непрерывно поступает из бункера 1 в зазор между валками. При вращении валков 3 происходит обжатие и вытяжка порошка 2 в ленту или полосу 4 определенной толщины. Процесс прокатки может быть совмещен со спеканием и окончательной обработкой получаемых заготовок. В этом случае лента проходит через печь для спекания, а затем снова подвергается прокатке с целью придания ей заданных размеров. Ленты, идущие для приготовления фильтров и антифрикционных изделий не подвергают дополнительной прокатке. Число обжатий, необходимое для получения беспористой  [c.423]


Порошковые материалы получают методом порошковой металлургии, сущность которой состоит в изготовлении деталей из порошков металлов путем прессования и последующего спекания в пресс-формах. Применяют порошки однородные или из смеси различных металлов, а также из смеси металлов с неметаллическими материалами, например с графитом. При этом получают материалы с различными механическими и физическими свойствами (например, высокопрочные, износостойкие, антифрикционные и др.).  [c.10]

Повышенные антифрикционные свойства и высокое сопротивление усталостным разрушениям обеспечивают новые триметаллические подшипники. Наиболее распространенные отечественные композиции трехслойных вкладышей состоят из стальной основы, промежуточного пористого медноникелевого или порошкового слоя и свинцового сплава, заполняющего поры промежуточного слоя и образующего рабочий поверхностный слой толщиной не более 100 мкм. Триме-таллы нашли широкое применение в автопромышленности (ГАЗ-53, ЗИЛ-130, ЗИЛ-375).  [c.358]

В зависимости от условий эксплуатации конструкционные порошковые материалы (КПМ) подразделяют на две группы материалы, заменяющие обычные углеродистые и легированные стали, чугуны и цветные металлы материалы со специальными свойствами — износостойкие, инструментальные, жаропрочные, жаростойкие, коррозионностойкие, для атомной энергетики, с особыми физическими свойствами (магнитными, электро- и теплофизическими и др.), тяжелые сплавы, материалы для узлов трения — антифрикционные и фрикционные и др. Физико-механические свойства КПМ при прочих равных условиях определяются плотностью (или пористостью) изделий, а также условиями их получения. По степени нагруженности порошковые детали подразделяют на четыре группы (табл. 7.1).  [c.174]

Заготовки из порошковых материалов имеют высокое качество поверхности с минимальными припусками на механическую обработку. Ка.м в этом случае достигает 0,95...0,99. Порошковой металлургией легко можно изготовить втулки с заданной пористостью, что позволяет, например, создать подшипники скольжения, имеющие высокие антифрикционные свойства без подвода смазки извне. В этом случае поры втулки заполняются смазкой в процессе изготовления или сборки.  [c.235]

Порошковые антифрикционные материалы подразделяются на пористые и компактные.  [c.577]

Компактные антифрикционные материалы. Применение методов порошковой металлургии для получения свинцовистой бронзы в виде ленты и биметаллических вкладышей позволяет избежать ряда трудностей, связанных с ликвацией, и изготовлять продукцию более экономно и с лучшим выходом годного. Из табл. 14 видно, что металлокерамическая свинцовистая бронза превосходит литую-как по значениям предельной допустимой нагрузки, так и по прочности.  [c.588]

Применение методов порошковой металлургии для изготовления тонкостенных биметаллических вкладышей дает экономию цветных металлов в 4—5 раз и уменьшает трудоемкость изготовления антифрикционных вкладышей в 2— 3 раза.  [c.638]

При трении с обильным смазыванием пористые порошковые материалы не имеют ярко выраженных преимуществ перед литыми. При трении же с ограниченным смазыванием или при граничной смазке износостойкость и работоспособность литых материалов резко снижаются. В этих случаях пористые порошковые антифрикционные материалы имеют большие преимущества, их антифрикционные свойства могут легко варьироваться в результате подбора оптимального состава материала, его пористости и содержания в нем веществ, выполняющих роль твердого смазочного материала и спо-  [c.43]

В настоящее время методом порошковой металлургии изготовляют многие сотни наименований деталей. Значительную часть всей номенклатуры, особенно в сельскохозяйственном машиностроении, составляют антифрикционные втулки. Однако в условиях абразивного изнашивания долговечность этих втулок не всегда отвечает требованиям. В будущем с увеличением объема выпуска порошковых деталей и повышением напряженности работы сельскохозяйственных и других машин эта проблема встанет гораздо острее.  [c.140]

Какие Вы знаете порошковые антифрикционные и фрикционные материалы  [c.431]

В аналогичных условиях характерно сравнительно небольшое увеличение / при повышении температуры. Сходные результаты получены при испытаниях тех же материалов в сравнении с антифрикционным порошковым материалом (бронзографитом) и графитом (рис. 1.5) [3]. Испытания проводили на машине МФТ-1 (торцовое трение без смазки) при коэ( ициенте взаимного перекрытия 0,33 скорость скольжения при испытаниях 0,4 м/с. Полиамид АТМ-2 по значениям коэффициента трения и их стабильности показал лучшие результаты по сравнению с полиа-  [c.36]


Наиболее существенной при эксплуатации изделий из антифрикционных порошковых сплавов является допустимая нагрузка. Так, для железографитов она допускается до 1000... 1500 МПа, а для бронзогра-фитов — в пределах 400...500 МПа.  [c.228]

Порошковые антифрикционные материалы, изготовленные в основном на основе недорогих металлов и сплавов, используются в узлах трения (подшипники скольжения, поршневые кольца и т. п.), успешна заменяя собой дорогостоящие литые, в частности баббитовые, изделия. Замена литых подшипников порошковыми не только снижает себестоимость изделий, но также обеспечивает получение антифрикционных изделий с самыми разнообразными гетерогенными структурами, которые могут содержать износостойкую твердую основу и различные мягкие включения, нередко выполняющие роль сухой смазки. Особую роль в антифрикционных порошковых изделиях играет остаточная пористост ,, величина которой может достигать 50 % и более.  [c.811]

Антифрикционные порошковые изделия на медной основе (табл. 21.25, 21.26) изготавливаются на базе оловянистых и цинкооловянисто-свинцовых бронз. Большое использование в качестве добавок находит графит, содержание которого в зависимости от назначения изделия может достигать 50 объемных процентов.  [c.815]

Некоторые виды изделий (фильтры, антифрикционные порошковые слои на стальной ленте) формуют для спекания сЕободдой засмпкой порошка, без Ерэс-сования или прокатки.  [c.146]

Антифрикционные порошковые материалы характеризуются низким коэффициентом трения, хорошей износостойкостью, способностью легко прирабатываться к валу и выдерживать значительные нагрузки. Они обладают рядом преимуществ по сравнению с обычными антифрикционными материалами. Их износостойкость в несколько раз выше, чем у бронз и баббитов. Они работают при более высоких скоростях и давлениях. Наличие в структуре пористости, регулируемой в широких пределах (до 35 %) позволяет их предварительно пропитывать смазочными маслами. Во время работы по мере нагревания масло, удерживаемое в порах и мельчайших каналах материала капиллярными силами, постепенно вытесняется наружу и образует смазочную пленку на рабочей поверхности. При остановке и последующем охлаждении подшипника масло частично всасывается обратно в поры. Поэтому пористые подшипники могут работать длительное время без дополнительной смазки. Эффект самосмазываемости в пропитанных маслом пористых подшипниках, без подвода смазки извне, может сохраниться в течение 3000—5000 ч.  [c.254]

Металлические порошковые материалы. Известны следующие разновидности материалов порошковой металлургии конструкционные, инструментальные, жаропрочные (различные детали летательных аппаратов, работающих ппч высоких температурах), фрикционные (тормозные узлы самолетов, тракторов и других машин), пористые (объем пор 10—30%) и высокопористые (объем пор больше 30%), в том числе антифрикционные (пористые подшипники в узлах трения, в том числе самосмазывающиеся, обладающие высокой сопротивляемостью износу, хорошей прирабатываемостью и низким коэффициентом трения). Из пористых материалов изготавливаются фильтры с легко восстанавливаемоа фильтрующей способностью потеющие детали, которые в одних случаях эффективно охлаждаются испаряющейся жидкостью, проходящей через них в других случаях согреваются фильтрующейся жидкостью, что необходимо, например, при борьбе с обледенением самолетов. В табл. 1.29 (см. приложение I) произведено сопоставление свойств различных пористых и компактных материалов.  [c.369]

Для изготовления подшипников скольжения применяют специальные материалы ПОД1ПИПНИКОВЫН антифрикционный материал и спеченный антифрикционный материал (м1 тодом порошковой металлургии).  [c.243]

Основным преимуществом методов порошковой металлургии является возможность получения деталей с особыми свойствами (антифрикционные, самосмазываю-щиеся изделия, фрикционные материалы, пористые изделия и пр.), к тому же они обеспечивают высокую точность изготовляемых деталей и хорошую чистоту их поверхностей (во многих случаях исключающую необходимость в дальнейшей механической обработке).  [c.320]

Наряду с ненаполненными пластмассами (ПЭ, ПТФЭ, полиамиды и др.) в узлах трения широко используются антифрикционные самосмазываю-щиеся пластмассы, содержащие в своем составе антифрикционные, армирующие и дисперсные наполнители, широкое применение получили комбинированные самосмазывающиеся материалы металлофторопластовые ленты, различные ленточные металлопласты, ленты на основе антифрикционных тканей. При помощи методов порошковой металлургии разрабатываются новые классы материалов и покрытий, имеющие повышенную износостойкость, жаропрочность, твердость, коррозионную стойкость.  [c.200]

Одним из наиболее эффективных способов устранения отрицательных свойств ПТФЭ является введение его в порошковый материал, имеющий сообщающиеся поры [35]. В этом случае металлический каркас обеспечивает механическую прочность и интенсивный отвод теплоты, а ПТФЭ придает композиционному материалу высокие антифрикционные свойства. На рабочей поверхности материала имеется тонкий слой фторопласта. При нарушении этого слоя начинается трение материала каркаса с сопряженной металлической поверхностью. Сила трения на этом участке резко увеличивается, что приводит к повышению температуры композиционного материала. Вследствие значительно более высокого, чем у металла, температурного коэффициента линейного расширения ПТФЭ выступает из пор и размазывается но поверхности трения, что вновь приводит к снижению коэффициента трения на этом участке. Таким образом, осуществляется самовосстановление поверхностного слоя и сохранение высоких антифрикционных свойств.  [c.43]

Основным преимуществом изготовления деталей методами порошковой металлургии является возможность получения деталей с особыми свойствами (антифрикционные, самосмазьшающиеся изделия, фрикционные материалы, пористые изделия и пр.).  [c.363]


Испытания металлокерамических железографитового и железо-медьграфитового материалов с добавками стеарата цинка и серы, изготовленных Московским заводом порошковой металлургии, при смазке веретенным маслом показали износостойкость на два порядка выше, чем в парах с оловянными бронзами (табл. 58). Это объясняется наличием в этих материалах пористости до 20% и влиянием антифрикционных добавок. Коэффициент трения возрастает с нагрузкой, что указывает на уменьшение эффективности смазки с ростом нагрузки. Однако его значение в несколько раз ниже, чем при трении оксидированного титана в паре с оловянными бронзами. Характерным при трении металлокерамических материалов на основе железа по оксидированному титану является отсутствие переноса частиц этих материалов на окси-дированную поверхность.  [c.217]


Смотреть страницы где упоминается термин Антифрикционные порошковые : [c.263]    [c.59]    [c.144]   
Металлы и сплавы Справочник (2003) -- [ c.769 ]



ПОИСК



А* порошковые

Антифрикционность

Ч антифрикционный



© 2025 Mash-xxl.info Реклама на сайте