Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Хромоникелевые Пассивность

Рис. 214. Схематическое изображение пленочно-адсорбционной пассивности поверхности нержавеющей хромоникелевой стали Рис. 214. <a href="/info/286611">Схематическое изображение</a> пленочно-<a href="/info/161063">адсорбционной пассивности</a> поверхности нержавеющей хромоникелевой стали

Существенным недостатком хромоникелевых так же, как и хромистых, сталей является их подверженность в определенных условиях некоторым видам местной коррозии, связанным с местным нарушением пассивного состояния, в том числе и межкристаллитной коррозии.  [c.421]

Коррозионная с т о Г1 к о с т ь х р о м о н и к е л е в ы х, сталей (как и хромистых) обусловлена в основном образованием на поверхности сплава защитной пассивной пленки однако хромоникелевые стали обладают несколько более высокой коррозионной стойкостью, чем хромистые стали. Объясняется это наличием в сплаве никеля, который способствует образованию мелкозернистой однофазной структуры и повышает стойкость стали в разбавленных растворах серной кислоты, а также,-в ряде водных растворов солей.  [c.226]

Как было установлено [63], потенциал пробоя для ряда нержавеющих хромоникелевых сталей в растворах хлоридов линейно уменьшается с ростом статических растягивающих напряжений за I пределом текучести, а плотность тока пассивного состояния уве-I личивается с ростом нагрузки при непрерывном деформировании. Причиной уменьшения потенциала пробоя считают повышенную химическую активность дислокаций.  [c.78]

Хромоникелевые стали обладают повышенной кислотостойко-стью. В пассивном состоянии скорость коррозии этих сталей в. большинстве случаев ничтожна. В активном состоянии по мере превышения критической кислотности подверженность этих сталей, коррозии значительно возрастает. В азотной кислоте, которая является сильным окислителем, хромоникелевая сталь может находиться как в пассивном, так и в транспассивном состоянии. Для экстремальных окислительных условий рекомендуется применять хромоникелевые стали без добавок молибдена с содержанием углерода не более 0,03%. В восстановительной соляной кислоте подобные стали имеют пониженную коррозионную стойкость. В щелочной среде хромоникелевые стали коррозионно устойчивы в зоне-температур 400—800° С.  [c.34]

Следует также учитывать, чю в сернокислотном производстве за последнее время произошли большие изменения как в используемом сырье, так и в технологическом оборудовании. Остановимся на проведенных в свое время испытаниях в производственных условиях, представляющих несомненно практический интерес и в настоящее время. Выбор сплавов для испытаний производился с учетом того, что наиболее агрессивным компонентом среды является серная кислота, причем учитывалось и то, что капли серной кислоты могут наряду с коррозионным разрушением производить и механическое изнашивание (эрозию), поэтому наибольший интерес представляют стали аустенитного класса. Хромистые и хромоникелевые стали не обладают высокой коррозионной стойкостью в серной кислоте, но учитывая, что газовая смесь содержит 10 — 12 % кислорода, который способствует сохранению пассивности, представилось целесообразным использовать в качестве объектов  [c.39]


Высокая коррозионная стойкость хромистых и хромоникелевых сталей обусловлена формированием на их поверхности защитной пассивной пленки. Однако хромоникелевые стали в целом более коррозионно стойки, чем хромистые.  [c.119]

Переход в пассивное состояние хромистых и хромоникелевых сталей в большинстве случаев сказывается на их электродном потенциале, который становится более электроположительным [14]. Для объяснения явления пассивности нержавеющих сталей выдвигалось большое количество теорий, однако наибольшее распространение из них получила теория оксидных пленок [1, 2]. Из других теорий, объясняющих пассивное состояние металла, следует отметить теорию адсорбции.  [c.61]

Явление пассивности хромистых и хромоникелевых нержавеющих сталей в присутствии солей и кислорода, являющегося сильным окислителем, выражается в появлении защитной плотной пленки. При механическом повреждении пассивной пленки она легко самопроизвольно восстанавливается и защищает поверхность детали от дальнейшего воздействия окружающей среды.  [c.25]

К коррозионностойким относятся стали с содержанием хрома не менее 12 %. В окислительных средах они переходят в пассивное состояние, сопровождающееся повышением электродного потенциала (рис. 1.1) и уменьшением скорости коррозии [1.1, 1.2]. В зависимости от легирования коррозионностойкие стали подразделяются на хромистые и хромоникелевые. Хромоникелевые  [c.10]

Как видно из сравнения данных для различных сталей (табл, 18), ток в пассивном состоянии уменьшается с увеличением содержания в сплаве никеля (12% Сг — 0,5% Ni 12% Сг — 14% Ni) и хрома (12%Сг—0,5% Ni 25%Сг —0,5%Ni), а также при дополнительном легировании хромоникелевых сталей Мо и Си (24%Сг -20% Ni и 25%Сг - 20% Ni - 2,5%Mo-3,5% u).  [c.115]

Хромоникелевая сталь 18-8 (пассивная).  [c.152]

Хромоникелевая сталь 18-8 с 3% Мо (пассивная).  [c.152]

Таким образом, катодно-деполяризующее действие SO2 ускоряет коррозионный процесс, однако при определенном увеличении содержания диоксида серы, зависящем от условий и состава стали, он может переводить сталь в пассивное состояние и выступать как окислительный ингибитор. Скорость коррозии стали зависит от сочетания воздействия SO2 на указанные катодные и анодные процессы. В условиях повышенной агрессивности раствора (повышенная кислотность, температура) более вероятным оказывается действие SO2, ускоряющее разрушение стали. В менее жестких условиях может преобладать ингибирующее действие SO2. Наличие молибдена в хромоникелевых сталях увеличивает их коррозионную стойкость в кислых растворах, содержащих SO2.  [c.186]

Одним из первых и наиболее распространенных в настоящее время растворов для испытания на склонность нержавеющих сталей к межкристаллитной коррозии является раствор серной кислоты и медного купороса, в котором кипятят образцы. Отличительной чертой этого раствора является то, что растворению в нем подвергаются преимущественно границы между зернами, в то время как тело зерен сохраняет относительную пассивность. Это связано с тем [1], что кристаллы твердого раствора Fe—Сг—Ni являются катодами по отношению к границам между ними. Деполяризация идет за счет выделения меди и водорода. Практика и специальные исследования [114, 115] показали, что в данном растворе наиболее четко и надежно выявляется межкристаллитная коррозия хромоникелевых сталей аустенитного класса. Однако испытания в этом растворе имеют и свои недостатки, а именно раствор выявляет межкристаллитную коррозию, связанную с выпадением карбидной фазы, и не выявляет ее в том случае, когда она является следствием выделения сигма-фазы.  [c.97]

Процесс нарушения пассивного состояния на аустенит-ной хромоникелевой стали связан с протеканием реакции  [c.585]

Как известно, коррозионная стойкость хромистых и хромоникелевых сталей основана на их способности пассивироваться, т. е. стационарные потенциалы этих сталей находятся в пассивной области анодной поляризационной кривой. Большое влияние на потенциалы, ограничивающие пассивную область на анодной поляризационной кривой (особенно на потенциал активирования), оказывает хром. Увеличение содержания хрома в сплавах железо-хром смещает потенциал активирования в отрицательную сторону, что приводит к расширению пассивной области сплава [1], [6]. Потенциал начала области перепассивации также несколько смещается в отрицательную сторону [1], [12], [23] или практически остается постоянным при всех  [c.93]


Из рассмотрения кинетики электродных процессов известно, что наличие катодных составляющих в большинстве случаев приводит к усиленной коррозии сплавов или, в случае коррозии металлов с кислородной деполярпзацнсй при диффузионном контроле, оказывает малое вл1ияпие. Однако исследования II. Д. Т(змашова и Г. П. Черновой показали, что возможно облегчение наступления пассивного состояния хромоникелевой нержавеющей стали при легировании ее небольшими присадками  [c.66]

Сле.аует отметить, как это было указано ранее в гл. IV, что при высоких концентрациях азотной кислоты хромоникелевые стали подвержены так называемому явлению перепассивации , при котором пассивные пленки теряют свои защитные свойства вследствие перехода хрома в окислы высшей валентности, неустойчивые в высококонцентрировашюй кислоте.  [c.227]

Сплавы, обладающие более устойчивой пассивностью, особенно в присутствии ионов хлора, например нержавеющие хромоникелевые стали аустенитного класса, легированные молибденом, например сталь марки Х18Н12МЗТ, а также титан и хром обладают высокой стойкостью к щелевой коррозии. Благодаря высокой стойкости хрома можно рекомендовать хромовые покрытия для защиты от щелевой коррозии.  [c.207]

Появление пассивируемых коррозионностойких сталей послужило также поводом для разработки анодной защиты. В сильно кислых средах высоколегированные стали, как и углеродистые, практически не поддаются катодной защите, потому что выделение водорода затрудняет необходимое снижение потенциала. Между тем с применением анодной защиты можно пассивировать и удерживать в пассивном состоянии также и высоколегированные стали. Ц. Эделеану на примере насосной системы из хромоникелевой стали в 1950 г. первый показал, что анодная поляризация корпуса насоса и подсоединенных к нему трубопроводов защищает от разъедания концентрированной серной кислотой [33], Неожиданно большая протяженность зоны анодной защиты может быть объяснена высоким сопротивлением поляризации пассивированной стали. Локк и Садбери [34] исследовали различные системы металл — среда, которые могут быть применены для анодной защиты. В 1960 г. в США уже эксплуатировалось несколько установок анодной защиты, например для складских резервуаров-хранилищ, для сосудов-реакторов в установках сульфонирования и нейтрализации. При этом достигалось не только увеличение срока службы аппаратов, но и повышение степени чистоты продукта, В 1961 г, впервые была применена в крупнопромышлен-ных масштабах анодная защита для предотвращения межкристаллитного  [c.35]

В кислых водах даже и высоколегированные хромистые и хромоникелевые стали подвергаются активной коррозии, так что необходимо принимать во внимание неравенство (2,48). При не слишком высокой концентрации кислоты и низких температурах в средах с ионами хлора и нитрат-ионами по мере повышения потенциала могут возникать следующие состояния катодная защита— активная коррозия—пассивность—язвенная коррозия— пассивность — транспассивная коррозия. Этот пример четко показывает, насколько различна зависимость различных видов коррозии от потенциала. Информацию, необходимую для осуществления электрохимической защиты, можно получить толыф в результате тщательных лабораторных исследований соответствующей системы.  [c.70]

На рис. 20.17 показана схема подключения анодной защиты к установке сульфонирования [22]. Здесь по соображениям безопасности диапазон защитных потенциалов для нейтрализатора из хромоникелевой стали, который поочередно загружается едким натром (NaOH) и сульфокислотой (RSO3H), должен был выбираться с таким расчетом, чтобы обеспечивалась пассивность в обеих средах. Перекрытие обеих областей потенциалов однако обеспечивалось только в узком диапазоне около 250 мВ. Границы защитного потенциала (по водородному электроду i/ н) были установлены от 0,34 до 0,38 В. При этом обеспечивается также и защита трубопроводов, поскольку сопротивление поляризации пассивной стали и электропроводность сред велики. Параметр  [c.394]

В качестве пассивного слоя применяются обычно сплавы типа инвара и платинита (например, сплав железа с 36% никеля), имеющие коэффициент тер.мичес-кого расширения, близкий к 1 10"8. Высокий коэффициент термического расширения имеют нержавеющие хромоникелевые стали, никельмолибденовые сплавы (20—27% Ni и 5—6 Мо) и латуни.  [c.287]

К сплавам, имеющим низкий коэфициент линейного расширения (пассивный элемент), относятся сплавы с содержанием N1 36—480/о к сплавам с высоким коэфициентом линейного расширения (активный элемент) относятся медноцинковые сплавы, немагнитная сталь ЭН25, хромоникелевые стали, никельмолиб-деновые сплавы (20—27о/и N1 и 5—6о/о Мо  [c.243]

Первая глава посвящена аналитическому обзору коррозионномеханического поведения и коррозионной стойкости аустенитных хромоникелевых сталей типа 18-10 и их сварных соединений в агрессивных средах нефтегазовой, нефтеперерабатывающей промышленности, отраслях топливно-энергетического комплекса. Рассмотрены взаимосвязь долговечности изделий из таких сталей в различных средах и условиях эксплуатации с их физико-механическими свойствами и структурным состоянием особенности эксплуатации изделий с ГМО из этих сталей и характер их разрушения, связанного в основном с потерей пассивности и коррозионно-усталостным нагружением в условиях эксплуатации. Разрушение ГМО, как правило, происходит по вершине гофра в околошовной зоне сварного соединения в местах питтинговой коррозии, обусловленной наличием активирующих хлорид-ионов в рабочих средах, а также частичной потерей пассивности, многократно усиленной анодной поляризацией блуждающими токами.  [c.7]


Введение в сталь никеля способствует не только улучшению механических свойств вследствие аустенизации структуры, но и облегчает пассивацию и повышает устойчивость пассивного состояния, в том числе в средах, провоцирующих развитие таких локальных коррозионных процессов как питтинговая и щелевая коррозия. Повышение коррозионной стойкости сталей вследствие легирования их никелем не связано с изменением состава и свойств пассивирующей пленки — никель в составе пассивирующих пленок не обнаружен. Недостатком хромоникелевых аустенитных сталей является их низкая стойкость портив коррозионного растрескивания, минимум которой приходится на наиболее широко распространенные стали типа 18 r-8Ni. Более 70% всех производимых нержавеющих сталей являются сталями аустенитного класса, содержащими > 17% хрома и свыше 10 % никеля.  [c.188]

Питтинговая (точечная) коррозия наблюдается у металлов и сплавов в пассивном состоянии, когда интенсивной коррозии подвержены отдельные небольшие участки поверхносги, что приводит к образованию глубоких поражений - точечных язв или питтингов. Коррозионное разрушение такого типа бывает у хромистых и хромоникелевых сталей, алюминия, никеля, циркония, титана в средах, в которых наряду с пассиваторами (окислителями) присутствуют депассиваторы (активаторы) - например, ионы галогенов.  [c.58]

Исследование анодного поведения хромистых, хромоникелевых и хромоникельмолибденистых сталей и их компонентов в растворах роданидов [52—55] показало, что легирование стали никелем, хромом, молибденом, а также увеличение pH роданидного раствора и анодная поляризация способствуют переходу сплава в пассивное состояние.  [c.55]

Хромоникелевые стали [57]. При pH 4,8, 25 °С и анодной поляризации хромистая сталь 12X17 в 1 н. растворе K NS не пассивируется. Легирование стали всего лишь 2% никеля приводит к существенному торможению анодного процесса в области активного растворения, а при потенциале положитель-нее —0,4 В, сталь переходит в пассивное состояние (рис. 3.10). Дальнейший сдвиг потенциала в положительную сторону приводит к локальной активации поверхности с образованием пит-тингов.  [c.56]

Хромоникельмолибденовые и хромоникелевые стали были первым объектом исследований Эделеану [67], Н. Д. Томашо-ва и Г. П. Черновой [68], которые показали возможность анодной защиты этих сталей в сернокислотных средах. Легирование Сг, Ni, Мо, Si, Мп, Nb, V, Ti приводит к возрастанию склонности к пассивации и улучшению условий применения анодной защиты, поскольку уменьшается критическая плотность тока пассивации (г кр), расширяется область устойчивой пассивности. Влияние легирующих элементов на параметры анодной защиты широко изучено Н. Д. Томашовым и Г. П. Черновой [69]. Вместе с тем, применение анодной защиты, как это будет показано ниже, позволило заменить высоколегированные сплавы менее легированными, Нержавеющие стали могут быть  [c.59]

Металлы и сплавы можно подразделить на две группы. В первой из них те, которые не подвергаются коррозии при катодной поляризации, во второй — инертные и пассивные в коррозионно-активной среде, но подверженные коррозии в условиях катодной поляризации. Ко второй группе могут относиться как благородные металлы, так и металлы, которые легко самопассивируются в данной среде. Например, платина совершенно инертна в расплавленных солях, а при катодной поляризации подвергается коррозии, что обусловлено протеканием побочных реакций. Хромоникелевая сталь пассивна в азотной кислоте при катодной поляризации протекает сложный механизм восстановления кислоты, сопровождающийся повышением скорости коррозии.  [c.80]

Электрохимическое поведение исследуемых сталей мало отличается одно от другого. В стационарных условиях наиболее устойчивой является сталь 06Н28МДТ. Ее стационарный потенциал при температурах до 70°С лежит в области устойчивой пассивности (0,1 В). Однако с ростом температуры (80—90°С) стационарный потенциал изменяется до —0,5 В, а сталь подвергается значительной коррозии. Стационарный потенциал стали 10Х17Н13М2Т находится в области устойчивого пассивного состояния (+0,1 В) при температурах до 50 °С. Выше этой температуры происходит активация стали до потенциалов —0,7 В, что соответствует области активного растворения ее. Хромоникелевая сталь 12Х18Н10Т наименее устойчива в стационарных условиях. Стационарный потенциал ее хотя и лежит в области пассивного растворения стали (—0,05—0,05 В), однако она легко активируется и в активной области подвергается сильной коррозии, значительно увеличивающейся с  [c.143]

Введение в 10%-ную H2SO4 хлор-ионов в количествах, еще не вызывающих анодного пробоя пассивной пленки, смещает потенциал пассивации и потенциал полной пассивации хромоникелевой стали 18% Сг — 8% Ni в положительную сторону. Ток пассивации увеличивается с повышением концентрации С1 . Малые концентрации С1 (до 0,1 N) практически не влияют на ток в пассивном состоянии, и только увеличение концентрации до 1 N приводит к значительному возрастанию тока в пассивном состоянии. Таким образом, С1 затрудняет процесс пассивации стали, приводит к сужению области пассивного состояния.  [c.82]

Поскольку пассивное состояние нержавеющих сталей определяется величиной окислительно-восстановительного потенциала, который в щелях и зазорах может быть значительно понижен, эти сплавы весьма склонны к щелевой коррозии [39]. В наибольщей степени этому виду разрушения подвержены хромистые стали. Хромоникелевые стали более устойчивы, однако и они часто подвергаются интенсивным разрущениям в щелях, особенно когда коррозионная среда содержит активаторы, например хлор-ионы.  [c.234]

Выдвигается также предположение, согласно которому помимо сегрегации примесей, развитию МКК может способствовать высокая плотность дислокаций на границах зерен, что приводит к ухудшению за щит-кых свойств пассивной пленки над ними, как это наблюдали для нержавеющей хромоникелевой стали, содержащей до 1 % Si. Однако при увеличении содержания Si до 3—4 %, когда концентрация Si в твердом растворе растет и становится достаточной для образования защитной пленки, обогащенной SiOz, влияние дислокации уже незаметно н стойкость стали к МКК при этом возрастает [103].  [c.103]

Коррозионные и электрохимические исследования в растворах азотной кислоты [53] показали, что как и в других агрессивных окислительных и неокислительных средах имеются области активного, пассивного состояния и перепас-сивации. Высокая коррозионная стойкость хромоникелевых сталей в азотной кислоте обусловлена тем, что их потенциал коррозии находится в пассивной области. Если же стали будут находиться в активном или частично запассирован-ном состоянии (см. гл. IV), например, вследствие контакта с металлами, имеющими отрицательный потенциал, то они могут интенсивно корродировать. При повышении окислительных свойств азотной кислоты (6—8 н. растворы при кипении, с добавками бихроматов или других сильных окислителей) потенциал смещается в область перепассивации, и коррозия сильно возрастает. Установлено, что коррозионная стойкость в растворах HNO3 обусловлена, главным образом, присутствием в сталях хрома. Хром как в пассивном состоянии, так и в начале области перепассивации обладает более высокой стойкостью, чем хромоникелевая сталь.  [c.181]


Коррозионная стойкость хромоникелевых сталей в растворах неокислительных кислот и растворах, содержащих хлориды может быть повышена легированием их молибденом. При этом, как правило, снижается скорость активного растворения, увеличивается склонность сталей к пассивированию (снижается ток пассивации и ток в пассивном состоянии), повышается устойчивость пассивного состояния. Стали 18 rl2Ni, легированные 2—3 % Мо, устойчивее в средах, содержащих хлор-ионы при невысоких температурах. Для повышения стойкости сталей в растворах с хлор-ионами при повышенных температурах требуются большие концентрации молибдена (до 5—6%). В серной кислоте хромоникелевые стали устойчивы только в очень разбавленных растворах. Легирование молибденом повышает их стойкость как вследствие возможности сохранения пассивного состояния в разбавленных растворах, так и в результате  [c.183]

При значениях потенциала, близких к 1100—1150 мв, кривая ток—потенциал снова становится параллельной оси ординат. Наблюдается область вторичной независимости анодного тока от потенциала. Явление вторичной пассивности специфично для хромистых и хромоникелевых сталей в растворах H9SO4. Оно имеет место и в растворах уксусной кислоты. Одно из вероятных объяснений явления вторичной пассивности может заключаться в образовании на поверхности стали защитной окисной пленки железа, тормозящей растворение стали. Образование этой пленки может происходить за счет кислорода, выделение которого происходит в кислых средах по уравнению  [c.29]


Смотреть страницы где упоминается термин Хромоникелевые Пассивность : [c.14]    [c.37]    [c.83]    [c.154]    [c.56]    [c.144]    [c.49]    [c.303]    [c.175]    [c.204]    [c.42]   
Материалы в машиностроении Выбор и применение Том 3 (1969) -- [ c.61 , c.62 ]



ПОИСК



Пассивность

Хромоникелевые



© 2025 Mash-xxl.info Реклама на сайте