Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Хромоникелевые Коррозия межкристаллитная и под

К межкристаллитной коррозии склонны высоколегированные стали всех классов, имеющие высокое содержание хрома, вследствие выпадения под действием нагрева карбидов хрома по границам зерен, обеднения границ зерен хромом и из-за этого пониженной стойкости границ против коррозии. Опасность межкристаллитной коррозии возникает при нагреве хромоникелевых сталей аустенитного и аустенитно-ферритного классов до температур 500—850°С, при нагреве высокохромистых сталей мартенситного, мартенситно-ферритного и ферритного классов до температур свыше 950°С.  [c.126]


Межкристаллитная коррозия — разрушение металла по границам кристаллитов (зерен) с потерей его механической прочности внешний вид металла при этом не меняется, но он легко разрушается на отдельные кристаллики под механическим воздействием (рис. 1,з). Объясняется это образованием между зернами металла или сплава рыхлых малопрочных продуктов коррозии. Этому виду коррозии подвержены хромистые и хромоникелевые стали, никелевые и алюминиевые сплавы.  [c.11]

Непосредственно с краем шва (один из очагов разрушения) металл имеет явно выраженные цвета побежалости, что хорошо видно под микроскопом (МБС-10) при увеличении в 10... 30 раз. Это позволяет предположить, что вблизи сварного шва существует зона провоцирующего нагрева, которая может быть причиной нарушения межкристаллитных связей в стали и привести к межкристаллитной коррозии (МКК), особенно у аустенитных хромоникелевых сталей не стабилизированных титаном или ниобием. По литературным данным [70, 81 и др.] для проявления склонности к МКК для сталей типа 18-10 (18-9)  [c.91]

Межкристаллитная коррозия распространяется по границам кристаллитов (зерен) металла. Этому виду коррозии подвержены некоторые сплавы (хромистые и хромоникелевые стали, сплавы на основе алюминия, никеля), у которых при определенных режимах термообработки, при старении или под напряжением изменяется химический состав на границе зерна по сравнению с составом в объеме зерна. Под действием коррозионной среды одна из структур, расположенная по границе зерна в виде непрерывной цепочки, растворяется при потенциалах активного состояния в этом случае анодная реакция локализуется на границе зерна, а само зерно металла (объем) находится в пассивном состоянии и разрушается мало.  [c.40]

Из производственной практики известно, что подготовка кромок листов из нержавеющих сталей в основном осуществляется механической резкой на станках и кислородно-флюсовой резкой. При этих способах не исключена возможность появления дефектов на подготовленных кромках, снижающих механическую прочность материала. При механической резке грубый рез может быть получен из-за вибрации резца. При кислородно-флюсовой резке имеет место изменение структуры металла кромки, а поверхностный слой металла у кромки реза, как было ранее установлено, обедняется легирующими элементами. Такие дефекты не имеют существенного значения, если кромка, полученная при резке нержавеющей стабилизированной хромоникелевой стали, предназначена под сварку. В этом случае предполагается, что во время сварки металл, примыкающий к поверхности реза, будет расплавлен, и, образованная резкой, зона термического влияния практически не повлияет на механические и коррозийные свойства сварного соединения. В случае обработки нестабилизированной стали, как показал опыт ряда заводов, резку следует сопровождать интенсивным охлаждением кромки водой, так как в этом случае уменьшается время нахождения металла при критической температуре, чем предотвращается выпадение карбидов хрома или, по крайней мере, уменьшается опасность образования межкристаллитной коррозии. Однако в обоих случаях для удаления слоя металла, обедненного легирующими элементами, кромка после резки должна быть зачищена абразивным кругом.  [c.51]


Помимо свойств известных хромистых сталей ферритного, полуферритного и мартенситного классов, а также аустенитных хромоникелевых сталей, в книге рассматриваются свойства двухфазных феррито-аустенитных сталей различных марок, имеющих по сравнению с аустенитными хромоникелевыми сталями более высокие прочностные свойства, повышенное сопротивление межкристаллитной коррозии и коррозии под напряжением.  [c.5]

Влияние титана и ниобия. Как уже отмечалось, хромоникелевые нержавеющие стали после пребывания в области повышенных температур проявляют часто склонность к межкристаллитной коррозии. Теоретически это явление объясняется тем, что углерод, переходящий интенсивно в твердый раствор при высоких температурах, при охлаждении до комнатной температуры пресыщает твердый раствор. При последующем нагреве на 500—850° углерод выпадает из раствора в форме карбидов хрома, которые располагаются по границам аустенитных зерен. Выделение карбидов хрома, содержащих 70—90% Сг по границам зерен, вызывает обеднение хромом прилегающих пограничных участков зерна до концентрации ниже той, которая обеспечивает нормальное сопротивление коррозии. Следовательно, если углерод не будет выделяться из твердого раствора в виде карбидов хрома и пограничные участки зерен не будут обедняться хромом, сплав не будет проявлять склонности к межкристаллитной коррозии. Введение в аустенитную нержавеющую сталь таких элементов, как титан и ниобий, которые при соответствующих температурных условиях образуют с углеродом карбиды (Т1С, КЬС), более устойчивые, чем хром, позволяет связать имеющийся в стали углерод и предотвратить образование карбидов хрома. Это делает сталь нечувствительной к межкристаллитной коррозии под воздействием так называемых критических температур.  [c.12]

Технологические особенности наплавки аустенитного хромоникелевого металла типа В во многом совпадают с особенностями сварки хромоникелевых коррозионностойких сталей (см. гл. 10). При наплавке на углеродистую сталь важно обеспечить минимальную долю основного металла и минимальное содержание углерода в наплавленном слое, если от него требуется повышенная стойкость против межкристаллитной коррозии. Поэтому значительное распространение нашла широкослойная наплавка под флюсом электродной лентой.  [c.740]

Энергетический баланс при дуговой сварке аустенитных хромоникелевых и ферритных сталей схематически изображен на рис. 40 1223]. Различие между ними можно объяснить меньшим отводом тепла листом из аустенитной стали, в особенности- при температурах ниже 1000° С. Поучительно сравнение с распределением энергии при дуговой сварке под слоем флюса, при которой энергия используется гораздо лучше. При такой сварке меньше тепла приходится на долю основного материала, благодаря чему уменьшается опасность появления склонности к межкристаллитной коррозии в переходных зонах (рис. 41). Автоматическая сварка в защитной атмосфере аргона (большая скорость сварки) имеет то же преимущество перед ручной электродуговой сваркой обмазанным электродом. Однако и в этом случае важен режим сварки [234].  [c.104]

При сварке нержавеющих хромоникелевых сталей следует отдать предпочтение способам, обеспечивающим более концентрированный нагрев и наименьшее время пребывания металла шва и околошовной зоны в области температур, при которых протекают процессы, вызывающие как возникновение склонности к межкристаллитной коррозии при контакте сварных соединений с агрессивной средой, так и образование трещин в шве и околошовной зоне (см. гл. VH). Из способов сварки плавлением поэтому наиболее предпочтительными являются электродуговая ручная или автоматическая сварка под флюсом, аргонодуговая сварка, а не газовая, при которой зона термического влияния намного шире, а время пребывания металла этой зоны в области опасных температур значительно больше.  [c.483]


При сварке высоколегированных хромоникелевых аустенитных сталей под влиянием термического цикла сварки могут протекать процессы, в результате которых произойдет потеря коррозионной стойкости металла и при воздействии на металл агрессивной среды возникает межкристаллитная коррозия. В главе VH рассмотрена физическая сущность этого явления. На рис. VII. 13 показана схематическая зависимость появления или потери склонности стали к межкристаллитной коррозии от температуры и времени, из которой следует, что для появления склонности к межкристаллитной коррозии необходима определенная выдержка стали при высоких температурах. Наименьшее время выдержки стали, необходимое -ДЛЯ появления склонности к межкристаллитной коррозии, наблюдается при температурах 680- 780°С. Как для более высоких, таки для более низких температур время выдержки, вызывающее такую склонность, увеличивается.  [c.502]

Необходимо составить полное условное обозначение электродов марки ЦТ-15 типа Э-08Х19Н10Г2Б по ГОСТ 10052-75, предназначенные для сварки жаропрочных хромоникелевых сталей, работающих под нагрузкой до 650 °С (жаростойкость до 800 °С). Установлено, что металл шва и наплавленный металл не склонны к межкристаллитной коррозии при испытании по методу AM (ГОСТ 6032-89). Электроды имеют основное покрытие и пригодны для сварки во всех пространственных положениях, кроме вертикального сверху вниз, только постоянным током обратной полярности.  [c.108]

Высоколегированные стали. Коррозии под напряжением подвержены аустенитные стали, например хромоникелевые стали 18-8 с добавкой Мо и без нее, стабилизированные и нестабилизированные низко-углеродистые сорта, аустенитные хромомарганцовоникелевые стали и стали с более высоким содержанием никеля (AISI309 и 310). Нержавеющая сталь с дисперсионным твердением более подвержена коррозии, чем аустенитная сталь. Ферритные хромистые стали с 12 17 и 25% хрома менее склонны к коррозии. Аустенитные стали особенно нестойки, если в них почти отсутствуют ферритные составляющие [121]. Коррозия здесь преимущественно вну-трикристаллитная. Она бывает и межкристаллитной — у сталей в сенсибилизированном состоянии или при недостаточной стабилизации.  [c.44]

Аустенитные стали по сравнению с углеродистыми имеют примерно в 2 раза меньшую теплопроводность и в 1,5 раза больший коэффициент теплового расширения, что значительно увеличивает коробление изделий в процесхе сварки наименьшее коробление достигается при сварке под флюсом и в защитных газах. Кислотостойкие хромоникелевые аустенитные стали типа 18-8 (например, 1Х18Н9Т) подвержены весьма опасному виду коррозийного разрушения — межкристаллитной коррозии. Для предупреждения межкристаллитной коррозии в сварных швах и уменьшения коробления во время сварки недопустим перегрев металла. Дуговую сварку необходимо вести короткой дугой на повышенных скоростях. При сварке металла большой толщины с разделкой кромок каждый последующий слой накладывать после полного остывания предыдущего шва. Швы, обращенные к агрессивной среде, следует выполнять в последнюю очередь, не подвергая их по возможности повторному нагреву.  [c.392]

Термическая обработка. Термическая обработка нержавеющих аустенитных сталей состоит обычно либо в закалке, либо в стабилизирующе(м отжиге. Закалка стали производится для повышения ее пластических свойств и сопротивления межкристаллитной коррозии. Стабилизирующий отжиг (850—900°) имеет целью только повышение сопротивления межкристаллитной коррозии. Температура нагре ва под закалку аустенитных хромоникелевых сталей обусловливается главным образом двумя факторами — содержание1М в стали углерода и величиной зерна аустенита. Как следует из диаграммы состояния Fe — Сг—Ni сплавов (см. рис. 1), чем выше содержание углерода, тем выше должна быть температура закалки. С другой стороны, чем больше величина зерна аустенита, полученная в результате термообработки, тем ниже стойкость стали против межкристаллитной коррозии и хуже ее пластические свойства и ударная вязкость.  [c.21]

Титан, образовывая карбиды Т1С, повышая тем самым стойкость против межкристаллитной коррозии, снижает стойкость против межкристаллитной коррозии, снижает стойкость против общей коррозии в сильноокисленных средах, в частности в кипящей азотной кислоте высоких концентраций, способствуя возникновению ножевой коррозии сварных соединений высокохромистых и хромоникелевых сталей. В этом смысле введение титана в сталь, предназначенную для работы в кипящих азотнокислых растворах, вредно. В то же время титан (а также ниобий и особенно молибден и бор) термозит диффузию некоторых элементов, например никеля, что оказывает положительное влияние на сохранение гомогенности стали. К положительным явлениям надо отнести также увеличение межатомных связей под воздействием титана и ниобия примерно в 3—5 раз (по данным Г. В. Курдюмова и С. В. Бокштейн) [28, 43].  [c.35]

Поверхность реза хромоникелевой стали, выполненного струей аргоновой пл азмы, имеет литой слой глубиной 0,2—0,5 мм. Протяженность зоны влияния с измененным зерном составляет 0,9 мм. На поверхности реза наблюдается изменение химического состава металла. Особенно заметно выгорает титан, содержание которого в поверхностных участках сокращается в 2—3 раза. Однако механические свойства и склонность к межкристаллитной коррозии сварных швов, выполненных по кромкам, подготовленным плазменной резкой без последующей обработки, практически равноценны соответствующим характеристикам соединений, сваренных по кромкам, подготовленным фрезерованием. Аналогичные результаты получают при резке аргоно-азотной плазмой и при резке аустенит-ных сталей проникающей дугой. Резке проникающей дугой в аргоне и аргоно-азотных смесях соответствует зона термического влияния глубиной 0,3—0,75 мм. В поверхностной пленке толщиной 0,005—0,35 мм наблюдается дендритная структура литого металла. Литой поверхностный слой после резки в азоте л азотно-аргоновых смесях приобретает повышенную твердость. Здесь обнаруживаются тугоплавкие соединения, содержащие окислы и нитриды, которые могут затруднять процесс последующей сварки. В то же время швы, сваренные под флюсом АН-26 по необработанным кромкам, разрезанным проникающей дугой, по коррозионной стойкости равноценны швам, сваренным после механической подготовки кромок. 140  [c.140]



Смотреть страницы где упоминается термин Хромоникелевые Коррозия межкристаллитная и под : [c.12]    [c.148]    [c.492]    [c.339]    [c.222]    [c.42]    [c.128]    [c.913]    [c.267]    [c.532]   
Материалы в машиностроении Выбор и применение Том 3 (1969) -- [ c.0 ]



ПОИСК



Коррозия межкристаллитная

Межкристаллитная коррози

Межкристаллитная коррозия нержавеющих хромоникелевых сталей в условиях гидроочистки (3. М. Калошина)

Межкристаллитная коррозия хромистых хромоникелевых сталей

Межкристаллитная коррозия хромоникелевых нержавеющих стаКоррозионная стойкость сварных соединений хромоникелевой стали

Межкристаллитная коррозия хромоникелевых сталей аустенитного класса

О методах испытания хромоникелевых сталей на межкристаллитную коррозию

Стойкость хромоникелевых сталей с ниобием против межкристаллитной коррозии

Ультразвуковой контроль межкристаллитной коррозии хромоникелевых сталей

Хромоникелевые

Хромоникелевые стали межкристаллитная коррозия



© 2025 Mash-xxl.info Реклама на сайте