Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пассивность адсорбционная

Тафеля уравнение 19, 26, 33, 35 Теория пассивности адсорбционная 29  [c.298]

Предлагалось много теорий пассивного состояния обзор их дан в ряде работ [3, 4, 5, 11, 15]. Остановимся здесь в основном на некоторых, имеющих наиболее важное значение рассмотрим пленочную теорию пассивности, адсорбционную теорию и теорию значности (теорию электронных конфигураций).  [c.298]

Очень большая замедленность анодной реакции ионизации металла имеет место при возникновении анодной пассивности (см. с. 305). Анодная поляризация металлов в определенных условиях может облегчать переход металлов в пассивное состояние (образование на металле первичных фазовых или адсорбционных защитных пленок), что сопровождается резким торможением анодного процесса с соответствующим самопроизвольным падением плотности тока и значительным смещением потенциала электрода в положительную сторону (участок BE на рис. 137) до значений, достаточных для протекания нового анодного процесса, обычно выделения кислорода [участок EF кривой (Ко,)обр DEF на рис. 137]. Значение этого вида анодной поляризации рассчитать нельзя и его берут обычно из опытных данных.  [c.197]


Эффект увеличения скорости растворения металла наблюдается, если скачок потенциала сосредоточен в ионном двойном слое. Эффект снижения скорости растворения металла (пассивность может наблюдаться, если скачок потенциала приходится на поверхностный слой металла анодная поляризация уменьшает кинетическую энергию поверхностных электронов (поверхностного уровня Ферми), что приводит к усилению их связи с поверхностными положительными ионами металла и, как следствие этого, к уменьшению свободной энергии и адсорбционной способности поверхности металла.  [c.311]

Так, Г. В. Акимовым и В. П. Батраковым была предложена гипотеза (1956 г.) относительно пленочно-адсорбционной природы пассивности нержавеющих сталей (рис. 214). Согласно этой гипотезе, на поверхности нержавеющих сталей имеется тонкая, эластичная и плотная защитная пленка. Под пленкой и в порах пленки находятся атомы или ионы кислорода (или более сложные комплексы окислителя), хемосорбированные металлом. Поверхность, имеющая защитную пленку, приобретает потенциал, близкий к окислительно-восстановительному потенциалу коррозионной  [c.312]

Рис. 214. Схематическое изображение пленочно-адсорбционной пассивности поверхности нержавеющей хромоникелевой стали Рис. 214. <a href="/info/286611">Схематическое изображение</a> пленочно-адсорбционной пассивности поверхности нержавеющей хромоникелевой стали
Н. Д. Томашов и Г. П. Чернова также считают более правильным говорить о пленочно-адсорбционном механизме торможения анодного процесса растворения металлов при их пассивности. При наличии сплощных пленок на поверхности металла адсорбционный механизм торможения анодного процесса, по мнению этих авторов, является добавочным и должен быть отнесен к этим пленкам, а не к поверхности металла.  [c.312]

Таким образом, явление пассивности состоит в сильном замедлении анодного процесса растворения металлов вследствие и -менений заряда и свойств поверхности металлов, вызванных образованием на ней адсорбционных, фазовых или адсорбционно-фазовых пленок окислов или других соединений.  [c.312]


Перепассивация при адсорбционном характере пассивности обусловлена ухудшением защитных свойств адсорбционного слоя кислорода.  [c.314]

Переход металла из активного в пассивное состояние носит название пассивации, а обратный процесс — активации или де-пассивации. Пассивный металл с термодинамической точки зрения не является более благородным, чем активный, а замедление коррозионного процесса происходит благодаря образованию на металлической поверхности фазовых или адсорбционных слоев, тормозящих анодный процесс.  [c.59]

Пленочная и адсорбционная теории не противоречат друг другу, но дополняют одна другую, и в ряде случаев только сочетанием обеих теорий можно объяснить различные случаи пассивного состояния металлов.  [c.62]

Несмотря на широкую распространенность способа повышения коррозионной стойкости поверхности металлов пассивными пленками, все же большое число явлений, наблюдаемых при пассивации, не может быть объяснено только одним защитным эффектом фазовой пленки. Так, например, при изучении пассивности нержавеющих сталей Г. В. Акимов пришел к выводу, что большая часть поверхности закрыта фазовой пленкой, под которой и в ее порах находятся адсорбционные атомы или ионы кислорода.  [c.63]

Адсорбционная теория пассивности. Основной механизм защиты металлов, согласно адсорбционной теории пассивности, заключается в насыщении валентностей поверхностных атомов металла путем образования химических связей с адсорбирую-  [c.63]

Рис. 24. Схема ионною скачка потенциала (а) и сложного адсорбционно-ионного скачка потенциала (б) при возникновении адсорбционной пассивности Рис. 24. Схема ионною <a href="/info/208923">скачка потенциала</a> (а) и сложного адсорбционно-ионного <a href="/info/208923">скачка потенциала</a> (б) при возникновении адсорбционной пассивности
С другой стороны, адсорбционная теория опирается на тот факт, что большинство металлов, подчиняющихся определению 1, являются переходными металлами в периодической системе (т. е. они имеют электронные вакансии или неспаренные электроны в d-оболочках атома). Наличие неспаренных электронов объясняет образование сильных связей с компонентами среды, особенно с Оа, который также содержит неспаренные электроны (что приводит к появлению парамагнетизма) и образует ковалентные связи в дополнение к ионным. Кроме того, переходные металлы имеют высокую температуру возгонки по сравнению с непереходными, что благоприятствует адсорбции компонентов окружающей среды, так как атомы металла стремятся остаться в кристаллической решетке, а образование оксида требует выхода из нее. Образование химических связей при адсорбции кислорода переходными металлами требует большой энергии, поэтому такие пленки называются хемосорбционными, в отличие от низкоэнергетических пленок, называемых физически адсорбированными. На поверхности непереходных металлов (например, меди и цинка) оксиды образуются очень быстро и любые промежуточные хемосорбционные пленки являются короткоживущими. На переходных металлах хемосорбированный кислород термодинамически более стабилен, чем оксид металла [22]. Многослойная адсорбция кислорода, характеризующаяся ослаблением связей с металлом, приводит с течением времени к образованию оксидов. Но подобные оксиды менее существенны при объяснении пассивности, чем хемосорбционные пленки, которые продолжают образовываться в порах оксида.  [c.81]

Измеренные химические эквиваленты для вещества пассивной пленки около 0,01 Кл/см ) соответствуют (при факторе шероховатости 4) одному слою атомов кислорода (г = 0,07 нм), на котором хемосорбирован один слой молекул кислорода (г = 0,12 нм), следовательно, адсорбционная пассивная пленка может быть пред-  [c.81]


Согласно адсорбционной теории, пассивность хрома и нержавеющих сталей, благодаря их повышенному сродству к кислороду, может достигаться путем непосредственной хемосорбции кислорода из воздуха или водных растворов. Количество кислорода, адсорбированного таким образом, имеет тот же порядок величины, что и пассивная пленка на железе, образованная путем анодной пассивации или пассивации в концентрированной азотной кислоте или хроматах [27]. Сходным образом атмосферный кислород может адсорбироваться непосредственно на железе и запассивировать его в аэрируемых щелочных растворах, а также в растворах близких к нейтральным с повышенным парциальным давлением кислорода .  [c.82]

Первичная пассивная пленка вырастает в многослойную адсорбционную структуру М-О-Н, которая может считаться аморфным нестехиометрическим оксидом. По своим защитным свойствам он заметно отличается от стехиометрического оксида, в который он в конце концов может превратиться.  [c.84]

С другой стороны, согласно адсорбционной теории [16], ионы С1 адсорбируются на поверхности металла, конкурируя с растворенным О2 или 0Н . Достигнув поверхности металла, С1 способствует гидратации ионов металла и облегчает переход их в раствор, в противоположность влиянию адсорбированного кислорода, который снижает скорость растворения металла. Иначе говоря, адсорбированные ионы С1 повышают ток обмена (снижают перенапряжение) для анодного растворения перечисленных металлов по сравнению с наблюдаемым для поверхности, покрытой кислородом. В результате железо и нержавеющие стали часто невозможно анодно запассивировать в растворах, содержащих значительные концентрации С . Напротив, металл продолжает растворяться с высокой скоростью как при активных, так и при пассивных значениях потенциала.  [c.84]

Хорошее соответствие между наблюдаемым и предсказанным критическим составом сплава свидетельствует не только о влиянии электронной конфигурации на пассивность, но и об адсорбционной структуре пассивной пленки .  [c.97]

Наиболее полно изучены процессы питтингообразования на коррозионно-стойких сталях. При наличии в коррозионной среде хлорид-ионов становится возможным активирование поверхности в отдельных ее точках, где пассивное состояние по каким-либо причинам менее устойчиво, чем на остальной поверхности. Такими участками могут быть неметаллические включения, структурные дефекты или участки с менее совершенной фазовой или адсорбционной пленкой, границы зерен и т. д. На этих участках хлорид-ионы относительно легко вытесняют кислород с поверхности и способствуют началу развития коррозии.  [c.166]

Если применение поляризованного света затруднено уже на нетравленой поверхности, то оно тем более усложняется при исследовании травленых поверхностей зерен, покрытых окисными слоями (адсорбционные слои электроположительной природы) в сочетании с различной отражательной способностью неровностей. Зерна, которые остаются самыми светлыми, ведут себя пассивно по отношению к кислороду при травлении, не дают никакого окрашивания или только слабо изменяют яркость.  [c.14]

Более реальным следует считать представление о преимущественном развитии механохимического эффекта в областях выхода линий скольжения, которые в обоих случаях находятся в возбужденном состоянии и вносят подавляющий вклад в величину прироста тока по сравнению со всей остальной поверхностью (активной или пассивной). Этот вклад, равный деформационному приросту тока реакции ионизации металла, определяется деформационным сдвигом химического потенциала атомов металлического электрода, одинаково влияющим на первичный акт перехода для активного и пассивного состояний, различающихся последующими промежуточными стадиями. Как в пленочной, так и в адсорбционной теориях пассивности считается установленным образование поверхностных хемосорбционных (промежуточных) соединений. На первичный акт перехода ион-атома металла при образовании такого промежуточного соединения оказывает влияние механическое воздействие на металлический электрод.  [c.86]

Некоторые металлы и сплавы — титан, алюминий, коррозионно-стойкие (нержавеющие) стали — в определенных условиях не подвергаются электрохимической коррозии вследствие так называемой пассивности. Пассивность — явление сложное, природа его до конца не изучена, но появление пассивности связано с образованием на поверхности металла адсорбционных слоев или пленок.  [c.7]

Пассивность металла — состояние достаточно высокой коррозионной стойкости, обусловленное торможением анодной реакции ионизации в определенной области потенциалов. Переход металла из активного состояния в пассивное называется пассивацией, обратный процесс обычно называют депассивацией (активацией). Замедление коррозии поверхности металла при пассивации обусловлено образованием на ней фазовых или адсорбционных пленок.  [c.20]

Существуют две основные теории пассивности пленочная и адсорбционная. Согласно первой, торможение коррозии обусловлено формированием на поверхности металла фазовой пленки, согласно второй - образованием адсорбционного многомолекулярного слоя кислорода или заполнения только отдельных активных центров. Теории эти не противоречат, а скорее дополняют одна другую.  [c.20]

Адсорбционная теория пассивности металлов предполагает возникновение на металлической поверхности моиомолекулярных адсорбционных слоев кислорода,  [c.308]

Для объяснения всех явлений, наблюдаемых при пассивности металлов, необходимо сочетание двух основных теорий пассивности — пленочной и адсорбционной, которые не исключают, а дополняют друг друга, описывая пленочную или адсорбцион-  [c.311]

Существует две основные теории пассивности металлов. Согласно первой — пленочной теории па(. сивного состояния, торможение процесса растворения металлов наступает в результате образования на их поверхности фазовой пленки согласно второй—адсорбционной теории, для пассивирования металла достаточно образование мономолекулярного слоя или заполнения только части поверхности металла атомами кислорода или кис-,лородосодержащих соединений.  [c.62]


Механизм пассивности объясняется в настоящее время при помощи двух теорий - пленочной и адсорбционной, в соответствии с пленочной теорией пассивности на поверхности металлов предполагается оОразование слоев продуктов реакции, окислов металлов или других соединений, которые отделяет металл от коррозионной среды, препятствуя диффузии реагентов и тем самым С1шхая скорость растворения металлов.  [c.38]

Согласно второй точке зрения, металлы, пассивные по определению 1, покрыты хемосорбционной пленкой, например, кислородной. Такой слой вытесняет адсорбированные молекулы HjO и уменьшает скорость анодного растворения, затрудняя гидратацию ионов металла. Другими словами-, адсорбированный кислород снижает плотность тока обмена (повышает анодное перенапряжение), соответствующую суммарной реакции М -f гё. Даже доли монослоя на поверхности обладают пассивирующим действием [16, 17]. Отсюда следует предположение, что на начальных этапах пассивации пленка не является диффузионно-барьерным слоем. Эту вторую точку зрения называют адсорбционной теорией пассивности. Вне всякого сомнения, образованием диффузионно-барьерной пленки объясняется пассивность многих металлов, пассивных по определению 2. Визуально наблюдаемая пленка сульфата свинца на свинце, погруженном в H2SO4, или пленка фторида железа на стали в растворе HF являются примерами защитных пленок, эффективно изолирующих металл от среды. Но на металлах, подчиняющихся определению 1, основанному на анодной поляризации, пленки обычно невидимы, а иногда настолько тонки (например, на хроме или нержавеющей стали), что не обнаруживаются методом дифракции быстрых электронов . Природа пассивности металлов и сплавов этой группы служит предметом споров и дискуссий вот уже 125 лет. Представление, что причиной пассивности всегда является пленка продуктов реакции, основано на результатах опытов по отделению и исследованию тонких оксидных пленок с пассивного железа путем его обработки в водном растворе KI + I2 или в ме-танольных растворах иода [18, 19]. Анализ электроно рамм пле-  [c.80]

Это справедливо, когда металлы после травления находятся на воздухе. Если их шлифуют, лойальные высокие температуры, возникающие на поверхности, приводят к образованию заметных количеств оксида, но это не пассивная пленка. Для обнаружения адсорбционных пленок, в том числе и пассивирующих, используют метод дифракции медленных электронов. — Примеч. авт.  [c.80]

Согласно адсорбционной теории, критический потенциал объясняют с точки зрения конкуренции адсорбции С1" и кислорода на пассивной пленке [32, 37]. Металл имеет большее сродство к кислороду, чем к ионам С1 , но если значение потенциала повышается, концентрация С1 возрастает, так что в конце концов ионы С1 могут заместить адсорбированный кислород. Наблюдаемый индукционный период — это время, которое требуется для успешной конкурирующей адсорбции на благоприятных участках поверхности металла, а также время проникновения С1" в пассивную пленку. Как было показано выше, в отличие от кислорода, адсорбция ионов С1" снижает анодное перенапряжение для растворения металла, чем объясняется более высокая скорость коррозии на участках, где произошло замещение. Другие анионы (например, NO3 или SO ), не разрушающие пассивную пленку и не вызывающие питттинг, конкурируют с С1" за места на пассивной поверхности. В связи с этим необходимо сдвигать потенциал до еще более высоких значений, чтобы увеличить концен-  [c.87]

Структура пассивной пленки на сплавах, как и пассивной пленки вообще, была описана и теорией оксидной пленки и адсорбционной теорией. В соответствии с оксидно-пленочной теорией, защитные оксидные пленки формируются на сплавах с содержанием легирующего компонента выше критического, а незащитные — на сплавах ниже критического состава. В случае преимущественного окисления пассивной составляющей сплава, например хрома, защитные оксиды (такие как СГ2О3) формируются, только если содержание хрома в сплаве превышает определенный уровень. Эта точка зрения не позволяет делать никаких количественных прогнозов, а тот факт, что пассивная пленка на нержавеющих сталях может быть катодно восстановлена и не соответствовать стехиометрическому составу, остается необъясненным. Согласно адсорбционной теории, в водной среде кислород хемо-сорбируется на Сг—Fe-сплавах выше критического состава, обеспечивая пассивность, но на сплавах ниже критического состава он реагирует с образованием непассивирующей оксидной пленки. Насколько данный сплав благоприятствует образованию хемо-сорбционной пленки или пленки продуктов реакции, зависит от электронной конфигурации поверхности сплава, особенно от взаимодействия d-электронов. Так называемая теория электронной конфигурации ставит в связь критические составы с благоприятной конфигурацией d-электронов, обеспечивающей хемосорбцию и пассивность. Теория объясняет природу взаимодействия электронов, определяющую, какой из компонентов придает сплаву данные химические свойства, например, почему свойства никеля преобладают над свойствами меди в медно-никелевых сплавах, содержащих более 30—40 % Ni.  [c.91]

При катодной поляризации хрома, нержавеющих сталей и пассивного железа пассивность нарушается вследствие восстановления пленки пассивирующего оксида или пленки адсорбционного кислорода (в зависимости от принятой точки зрения на природу пассивности). К тому же, согласно адсорбционной теории, атомы водорода, образующиеся при разряде ионов Н+ на переходных металлах, стремятся раствориться в металле. Растворившийся в металле водород частично диссоциирован на протоны и электроны, а электроны способны заполнять вакансии d-уровня атомов металла. Следовательно, переходный металл, содержащий достаточное количество водорода, более не в состоянии хемосорбиро-вать кислород или пассивироваться, так как у него заполнены d-уровни.  [c.98]

В известных случаях в гетерогенных системах в формировании адсорбционного защитного слоя могут участвовать и некоторые компоненты среды. Так, например, в гетерогенной системе нефть — вода на поверхности контактирующего с ней металла могут образовываться более сложные слои типа сэндвича , где одной обкладкой служит металл, другой — углеводородный слой, а между ними находится соответствующим образом ориентированный ингибитор. Такая двухслойная пленка обеспечивает более полную защиту металла, чем один слой ингибитора. Ни в одном из рассмотренных случаев защита от коррозии не связана с образованием поверхностного слоя оксида или гидроксила и с последующим переходом металла в пассивное состояние. Адсорбционные ингибиторы могут поэтому применяться для защиты любых металлов, как пассивирующихся, так и не способных переходить в пассивное состояние.  [c.41]

Это предположение было обоснованным, так как многие исследования показали, что присутствие ряда органических веществ, особенно нитро- и нитрозосоединений, перемещает потенциал платино-водородного электрода далеко в положительную сторону [8 91. Помимо того, было доказано, что практически всю анодную поляризационную кривую, приведенную на рис. 17, можно получить путем подбора серии окислителей с широким набором редокс-потен-циалов [85 88]. И. Л. Розенфельд и его сотрудники создали широкую номенклатуру эффективных ингибиторов, в которых сочетаются пас-сивационные и адсорбционные свойства, что способствует защите черных и многих цветных металлов от коррозии. Это достигается в результате перевода металла в пассивное состояние при восстановлении окислительного компонента ингибитора, адсорбция других компонентов ингибитора сокращает активную поверхность и облегчает достижение пассивности.  [c.51]


Так же, как и в случае межкристаллитной коррозии, металл характеризуется несколькими анодными кривыми, зависяш,ими от адсорбционных свойств поверхности и наличия металлических или неметаллических включений. Точечная и язвенная коррозия особенно характерна в средаза, содержащих хлорид-, бромид-или иодид-ионы, которые адсорбируются на отдельных участках металла. Условия пассивации на таких участках резко отличаются от основного фона металла как по потенциалам начала пассивации, так и по потенциалам полной пассивации. Изменяется также величина критического тока пассивации и потенцмал пробоя. Точечная и язвенная виды коррозии проявляются или в области потенциалов, характеризующих переход из активного состояния в пассивное, или в области высоких потенциалов, характеризующих переход из пассивного состояния в состояние пробоя. При этом участки с ослабленной пассивной пленкой пробиваются при  [c.38]

Следует указать, что никель, обладающий высокой энергией дефектов упаковки и поэтому облегченным поперечным скольжением дислокаций при деформации, не образует плоских скоплений дислокаций и поэтому не может считаться подходящим объектом для изучения закономерностей механохимического поведения деформируемого металла в смысле влияния степени деформации на его электрохимические свойства. В то же время, ячеистую субструктуру слабо взаимодействующих дислокаций в никеле можно было бы использовать для изучения адсорбционной и пассивационной способности дислокационных центров , не осложненной их взаимодействием. Однако монотонная зависимость адсорбционных и электрохимических свойств пассивной поверхности от плотности дислокаций (и степени деформации) может искажаться механическими нарушениями пассивирующего слоя в местах выхода линий и полос скольжения, плотность и топография, которых зависят от стадий кривой упрочнения.  [c.73]

Экспериментальные данные о хемомеханическом эффекте, приведенные выше, характеризуют его пластифицирующее действие как на активно, так и на пассивно растворяющейся поверхности, в том числе в условиях образования окисных или солевых (фосфат- ных) пленок. Последнее обстоятельство подтверждает тот факт, i что хемомеханический эффект, в отличие от адсорбционного, не связан с изменениями поверхностной энергии, так как пассивация [ поверхности (повышение стойкости против растворения) означает как бы упрочнение межатомных связей поверхностных атомов, а следовательно и повышение поверхностной энергиц, но твердость i и микротвердость при этом все же уменьшаются т. е. металл пла- i стифицируется.  [c.143]

Скорости растворения металлов в пассивном состоянии значительно менее чувствительны к составу водных растворов электролитов, чем потенциал и ток пассивации, хотя некоторые анионы, обладающие адсорбционной способностью, могут оказывать на величину этой скорости заметное влияние. Так, установлено ускоряющее действие ионов С1О4 [103] и галогенид-ионов [36] на процесс растворения пассивного никеля. Иная картина наблюдается в  [c.23]

Имеющиеся экспериментальные данные позволяют сделать вывод, что механизм инициирования питтингов сводится к адсорбционному вытеснению активирующими анионами пассивирующих частиц на отдельных наиболее активных участках поверхности пассивного металла, в то время как развитие питтингов яюляется типичным электрохимическим процессом, заметно осложненным процессами миграции и диффузии активирующих анионов и гидролизом первичных продуктов анодного растворения металла 1131).  [c.31]


Смотреть страницы где упоминается термин Пассивность адсорбционная : [c.64]    [c.312]    [c.65]    [c.83]    [c.84]    [c.102]    [c.130]    [c.82]   
Ингибиторы коррозии (1977) -- [ c.23 ]



ПОИСК



Пассивность

Теория пассивности адсорбционная

Теория пассивности адсорбционная пленочная

Теория пассивности адсорбционная растворов газовая

Теория пассивности адсорбционная химическая



© 2025 Mash-xxl.info Реклама на сайте