Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Колебания нелинейной параметрической системы

КОЛЕБАНИЯ НЕЛИНЕЙНОЙ ПАРАМЕТРИЧЕСКОЙ СИСТЕМЫ  [c.205]

Параметрические возбуждения встречаются во многих системах. Так, например, они возникают в системах, на которые действуют периодически изменяющиеся силы (см. пример 1), при периодически изменяющейся жесткости упругих элементов системы, при качке судов [7], при вращении валов с различными моментами инерции и т. п. Большое значение имеют рассмотренные в этой главе методы при исследовании устойчивости периодических колебаний нелинейных систем.  [c.254]


Это уравнение при Р = 0 допускает только одно стационарное решение Х1 = 0, так как при этом исходная система должна находиться в покое. При РфО уравнение (3.6.3) можно рассматривать как уравнение, описывающее колебательную систему с вынужденными колебаниями и амплитудами порядка р и периодом 2л/р, взаимодействующими с собственными колебаниями вследствие нелинейности системы. Вопрос же о существовании стационарных собственных колебаний требует дополнительного исследования, так как в этом случае система, вообще говоря, претерпевает периодическое (с частотой, кратной р) изменение энергоемких параметров, что может при выполнении определенных частотных соот-нощений привести к эффектам параметрического вложения энергии. При этом предполагается, что амплитуда воздействующей силы Р не ограничена условием малости подобно силам сопротивления и силам, связанным с нелинейными свойствами системы, которые имеют порядок малости р.  [c.120]

Если в системе нелинейность имеет другой характер, при котором у<сО и, следовательно, средняя частота свободных колебаний уменьшается с ростом амплитуды, то для вынужденных колебаний при параметрическом воздействии получим два выражения  [c.137]

Выше уже упоминалось, что для нелинейных систем не представляется возможным провести четкое разграничение между силовым и параметрическим воздействиями. При силовом воздействии вынужденный колебательный процесс, вызванный внешней силой, будет за счет нелинейных свойств системы приводить к периодическому изменению соответствующих параметров. Поэтому в конечном счете результирующий вынужденный процесс может иметь некоторое сходство с параметрически возбуждаемым колебательным процессом может нарушаться монотонность изменения амплитуды при изменении соотношения частот и могут наблюдаться интенсивные колебания при частотных соотношениях, типичных для параметрических резона (сов.  [c.160]

В подобных системах параметрический механизм возбуждения колебаний в колебательной системе реализуется за счет управления нелинейным параметром с помощью напряжения накачки, что можно осуществить включением генератора напряжения в последовательный колебательный контур, содержащий нелинейный реактивный элемент.  [c.172]

Чтобы использовать асимптотические методы Н. Н. Боголюбова и Ю. А. Митропольского при изучении одночастотных колебаний нелинейных или параметрических систем, необходимо сделать некоторые допуш,ения. Во-первых, в исходной системе, движение которой описывается уравнением (4.34), возможны гармонические незатухающие колебания с какой-либо частотой й . Во-вторых, равновесие исходной системы (4.34) возможно только при тривиальном решении  [c.176]


Данный метод позволяет оценить устойчивость системы по среднеквадратичному значению и определить только дисперсию выхода параметрической системы при вынужденных колебаниях. Вопрос о функции распределения выхода системы остается открытым, поскольку в области параметра t система нелинейна. Ниже данный метод полу 1ит развитие для ряда характерных случаев.  [c.203]

В линейных параметрических системах, как известно, невозможен стационарный режим параметрических колебаний. Колебания в них будут или неограниченно возрастать, или убывать до нуля. Ограничение амплитуды обусловлено наличием нелинейностей. Поэтому представляет существенный интерес исследование стационарных вынужденных колебаний нелинейных систем. Рассмотрим частные случаи (6.19). Остановимся сначала на нелинейной инерционности для схемы, показанной на рис. 66, б лго (t) = 0  [c.243]

В противном случае систему называют нелинейной. Линейность дифференциальных уравнений и дополнительных условий относительно и (/) еще не означает линейности оператора Н. Так, параметрические системы нелинейны по отношению к параметрическим возмущениям, что находит отражение, например, в методах их аналитического исследования (см. гл. XIX). Как и в теории детерминистических колебании, вводятся понятия о стационарных и нестационарных системах, о системах с конечным, бесконечным счетным и континуальным числом степеней свободы. Операторное уравнение (2) для распределенных систем обычно реализуется в виде дифференциальных уравнений в частных производных с соответствующими граничными и начальными условиями. Поэтому применительно к задачам случайных колебаний распределенных систем применяют также термин стохастическая краевая задача.  [c.286]

Ниже рассмотрены некоторые специфические особенности вынужденных и параметрических колебаний нелинейных систем. Ряд явлений, сопровождающих действие высокочастотных колебаний в нелинейных системах, изучается в гл. IX,  [c.156]

Параметрические колебания в линейных системах рассмотрены -в т. 1, гл. VII. В табл 4 приведены некоторые физические модели нелинейных систем с одной степенью свободы и параметрическим возбуждением, уравнение движения для которых приводится к виду  [c.168]

Уравнения (59) и (60) имеют решение < = О, соответствующее положению равновесия системы Как и в линейных системах, параметрическое возбуждение может вызвать неустойчивость этого положения равновесия и появление колебательного процесса, называемого параметрическим резонансом. Однако, в отличие от линейных систем, параметрические колебания нелинейной системы обычно оказываются ограниченными по амплитуде, в системе устанавливается некоторый периодический процесс  [c.169]

Выполнение условий неустойчивости (20) параметрических колебаний (51) приводит к неограниченному экспоненциальному росту амплитуды при i оо [6]. Этот недостаток объясняется неполнотой линейной модели, а также отсутствием учета диссипации. При наличии диссипации и нелинейности в системе устанавливаются стационарные колебания ограниченной амплитуды. Источниками нелинейности могут быть следующие факторы.  [c.61]

Любая хаотическая система должна иметь нелинейные элементы или свойства. В линейной системе не может быть хаотических колебаний. В линейной системе периодические внещние воздействия вызывают после затухания переходных процессов периодический отклик того же периода (рис. 2.1). (Исключением являются параметрические линейные системы.) В механических системах возможны следующие нелинейные компоненты  [c.47]

При исследовании устойчивости стационарных колебаний нелинейных систем всегда получаются дифференциальные уравнения с периодическими коэффициентами. Поэтому существует тесная связь между собственными колебаниями нелинейной системы и параметрическими колебаниями Если x=x (t) — стационарное (т. е. периодическое) решение нелинейного уравнения  [c.156]


После обоснования расчетной модели сооружения составляют уравнение или систему дифференциальных уравнений, описывающих колебания этой модели. В случае нелинейно-упругих систем матрица коэффициентов жесткости состоит из величин, зависящих только от параметров реакции системы. Для систем гистерезисного типа и систем с переменной структурой коэффициенты матрицы зависят также от времени. В зависимости от того, ь кие дополнительные факторы учитывают в расчете, в дифференциальных уравнениях могут -быть дополнительные члены, характеризующие геометрическую нелинейность, нелинейную инерционность системы, нелинейное затухание, а также возбуждение параметрических колебаний [9, 19, 411.  [c.68]

Эта модель была преобразована к дискретному виду в пространстве состояний, затем записана в балансной форме [4], и ее размерность была понижена до четвертого порядка исходя из того, что в заданном частотном диапазоне имеются только две моды колебаний. Полученная в результате дискретная модель в пространстве состояний была преобразована к непрерывной форме для исследования нелинейной системы в целом и синтеза закона управления. Рис, 15 позволяет сравнить оценки передаточной функции, полученные по параметрической модели в пространстве состояний и с помощью анализа Фурье (см. рис. 14). Основная нелинейность в системе (характеристика вход — выход представлена на рис. 16) связана с ограниченным полем зрения датчика положения. Регулятор был спроектирован для линейной непрерывной системы, модель которой была получена в результате идентификации с использованием метода решения ЛКГ-задачи [51. Полученный регулятор представлен в модальной форме.  [c.183]

Если замкнутая траектория на фазовой плоскости является изолированно , она называется предельным циклом. Наличие устойчивого предельного цикла на фазовой плоскости говорит о том, что в системе возможно установление незатухающих периодических колебаний, амплитуда и период которых в определенных пределах не зависят от начальных условий и определяются лишь значениями параметров системы. Такие периодические движения А. А. Андронов назвал автоколебаниями, а системы, в которых возможны такие процессы, — автоколебательными [ 1 ]. В отличие от вынужденных или параметрических колебаний, возникновение автоколебаний не связано с действием периодической внешней силы или с периодическим изменением параметров системы. Автоколебания возникают за счет непериодических источников энергии и обусловлены внутренними связями и взаимодействиями в самой системе. Одним из признаков автоколебательной системы может служить присутствие так называемой обратной связи, которая управляет расходом энергии непериодического источника. Из всего сказанного непосредственно следует, что математическая модель автоколебательной системы должна быть грубой и существенно нелинейной.  [c.46]

В линейной неконсервативной системе при параметрическом резонансе происходит неограниченный рост амплитуды, так как и вложение, и потери энергии пропорциональны квадрату амплитуды и только в нелинейной системе происходит ограничение колебаний.  [c.143]

Из выражения для А , ясно видна роль нелинейности сопротивления (Р) системы. Если Р О, т. е. если уменьшать нелинейность системы, то амплитуда параметрических колебаний будет постепенно увеличиваться, и в пределе дтя линейной системы должна обратиться в бесконечность, что согласуется с теорией параметрического возбуждения линейных диссипативных систем,  [c.165]

Отсюда сразу виден физический смысл коэффициента нелинейности у. Чем меньше коэффициент нелинейности у, т. е. чем ближе нелинейная система к линейной, тем больше возможная в системе амплитуда параметрических колебаний.  [c.169]

Последнее обозначение оправдано физическими соображениями и еще раз подтверждает, что расстройка частоты в колебательном контуре с нелинейной реактивностью зависит от амплитуд действующих в нем напряжений. При увеличении амплитуды параметрических колебаний в системе изменяется среднее значение нелинейной емкости, что вводит некоторую дополнительную расстройку и ограничивает амплитуду колебаний на более низком уровне, чем при той же расстройке и ма лых действующих амплитудах А О и Р. 0. В полученном решении присутствуют и вынужденные колебания, которые служат источником энергии для параметрических колебаний и способствуют увеличению их амплитуды. Поэтому расстройка характеризует изменение собственной частоты контура ол,, по отношению к половине частоты напряжения накачки от первоначального значения при Л=0, Я = 0 до значений при АфЬ, Р = 0.  [c.176]

Второй член в правой части (7.2.3) обеспечивает параметрическое вложение энергии, а третий — нелинейность системы, необходимую для ограничения амплитуды колебаний. Напряжение на нелинейной емкости равно  [c.261]

Как в мягком, так и в жестком режимах при выполнении условия (7.2.8) частота колебаний не зависит от амплитуды накачки. При невыполнении (7.2.8) появляется зависимость частоты генерации от амплитуды накачки. Область существования параметрической генерации ограничена как со стороны малых амплитуд накачки ( порог ), так и со стороны больших амплитуд Л ( потолок ). Существование порога обусловлено необходимостью для генерации полной компенсации потерь в системе за счет параметрического вложения энергии. Наличие потолка связано с расстройкой парциальных частот при больших амплитудах накачки из-за нелинейной реактивности в системе. При жестком режиме возбуждения системы колебания возникают при наличии начального толчка, достаточного для перехода через нижнюю неустойчивую ветвь амплитудной характеристики (см. рис. 7.4). Из рис. 7.6 видно, что в жестком режиме параметрические коле-  [c.264]


Для резонансных явлений в нелинейных консервативных системах как при силовом, так и при параметрическом воздействии характерна и принципиальна несимметрия резонансных кривых, связанная с законом неизохронности колебаний рассматриваемой системы. Это общее свойство присуще также и неконсервативным системам, но лишь при условии, что по крайней мере один из их консервативных (энергоемких) параметров зависит от основной переменной, т. е. по введенной терминологии нелинеен (например, нелинейная емкость, нелинейная индуктивность, нелинейная жесткость и т. п.).  [c.141]

Как известно, задачи динамической устойчивости систем сводятся к решению уравнений Хилла или Матье. Эти уравнения занимают особое место в математическом анализе. Однако точных методов решения уравнений типа Хилла или Матье в настоящий момент не существует. Нет и точных методов исследования переходных процессов в параметрических системах. Поэтому при решении различных задач пользуются всевозможными приближенными приемами, которые с той или иной степенью точности позволяют определить зоны неустойчивости системы, а для нелинейных задач оценить величины амплитуд колебаний.  [c.198]

В первую часть пособия включены задачи и упражнения по всем основным разделам курсов теории колебаний, относящихся к системам с конечным числом степеней свободы. Сформулированы задачи, связанные с анализом установившихся и неустани-вившихся режимов колебаний определением вероятностных характеристик решений при действии случайных сил анализом нелинейных колебаний анализом устойчивости параметрических колебаний и др. Для большинства задач приведены ответы и алгоритмы решения, в том числе с использованием ЭВМ.  [c.295]

Свободные колебания упругой одномаосовой системы, полость которой частично заполнена идеальной жидкостью, рассматривались в работах Г. С. Нариманова (82] и Л. Н. Сретенского [119]. Подробное исследование динамики я-массовой системы с жидким заполнением было выполнено в работах [27, 28, 86], где рассматривались линейные, нелинейные и параметрические системы при детерминированных и случайных внешних нагрузках.  [c.110]

В нелинейных системах, как было показано на отдельных примерах (см. рис. 4.6 и 4.7), даже в консервативном приближении неограниченного нарастания параметрически возбужденных колебаний не происходит, ибо присущая нелинейным системам неизохронность приводит с ростом амплитуды колебания к нарушению требуемых частотных и фазовых соотношений и к прекращению вложения энергии в систему со стороны механизма, изменяющего параметр, а следовательно, к установлению определенной амплитуды вынужденных колебаний.  [c.143]

Из всего изложенного выше вытекает, что для теоретического исследования явления парадштрической генерации колебаний необходимо привлечь к рассмотрению нелинейные характеристики параметров системы. Их анализ позволяет получить как закон установления амплитуды параметрических колебаний, так и выражения для стационарных значений этих а илитуд.  [c.163]

Кривые параметрического возбуждения для разных величин коэффициента затухания системы и фиксированных значений т и р показаны на рис. 4.23. Из рассмотрения этих графиков и выражения для стационарной амплитуды можно сделать следующие заключения. При наличии нелинейного сопротивления амплитуда параметрических колебаний все1да ограничена область возбуждения симметрична относительно пулевой расстройки и сужа-егся при увеличении потерь Кроме того, ширина  [c.166]

Во-вторых, в реальных колебательных системах с нелинейными реактивными элементами необходимо учитывать также нелинейную проводимость (сопротивление) последних, например сопротивление запертого полупроводникового диода или конденсатора с сегнето-электриком. Сопротивления нелинейных элементов увеличиваются с ростом амплитуды параметрических колебаний, в результате чего для областей параметрического возбуждения таких систем характерно сочетание специфических черт, присущих как системам с нелинейной реактивностью (наклон области возбуждения), так и системам с нелинейной днсснпацией (замкнутость кривой, ограничивающей область возбуждения), при решении задачи с учетом членов только первого порядка малости.  [c.172]

На рис. 4.28 представлен нелинейный электрический колебательный контур, состоящий из элементов L, R, С (q) и генератора напряжения ПаСОз2(й/. Проанализируем процессы, происходящие в такой системе, рассмотрим условия и особенности возбуждения колебаний в ней, выясним вопрос о наличии стационарной отличной от нуля амплитуды параметрически возбужденных колебаний.  [c.172]

Из этого выражения отчетливо видна несимметрия области параметрического резонанса, о которой речь шла выше. Несимметрию области параметрического резонанса для колебательной системы с нелинейным реактигным параметром и генератором накачки можно объяснить также качественно. Дело в том, что в рассматриваемом нелинейном колебательном контуре при воздействии на него напряжения накачки возникают вынужденные колебания, которые изменяют среднее значение емкости системы, чем и объясняется начальная расстройка контура в отсутствие параметрически возбужденных колебаний (несимметрия и относительно оси ординат).  [c.178]

Поскольку в колебательной системе имеются параметрически оо.збужденные колебания с амплитудой А, то существует допол-низельное смещение (напряжение), которое смещает рабочую точку влево от нуля, изменяя тем самым нелинейную дифференциальную емкость диода. При этом, естественно, изменяется и расстройка системы.  [c.180]

При ограничении параметрических колебаний за счет нелинейной реактивности (расстроечиый механизм ограничения) система приходит к своему стациоияриому состоянию осцилляторно (рис. 4.34). Колебательный процесс установления колебаний может возникать за счет инерционности реактивного параметра. В этом случае характеристический показатель >. является комплексной величиной, н которой действнтель.чая часть (Нел) определяет скорость уменьшения амплитудных вариаций, а мнимая часть (1т Я) — частоту (период) осцилляций при выходе на стационарную амплитуду.  [c.182]

В определенной области, если при этом обеспечивается достаточная глубина изменения параметра (порог для внешнего воздействия), происходит параметрическое возбуждение колебаний в недовозбужденной автоколебательной системе с частотой, точно в два раза меньшей частоты внешнего воздействия. Этим объясняется форма резонансных кривых второго рода, аналогичных кривым параметрического резонанса в параметрических генераторах с нелинейным затуханием.  [c.222]


Смотреть страницы где упоминается термин Колебания нелинейной параметрической системы : [c.138]    [c.23]    [c.69]    [c.81]    [c.133]    [c.141]    [c.143]    [c.161]    [c.162]    [c.178]    [c.363]   
Смотреть главы в:

Вероятностные методы динамического расчета машиностроительных конструкций  -> Колебания нелинейной параметрической системы



ПОИСК



Колебания нелинейные

Колебания параметрические

Колебания системы нелинейные

Нелинейность колебаний

Ряд параметрический

Системы нелинейная



© 2025 Mash-xxl.info Реклама на сайте