Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнение для функции тока при безвихревом движении

Очевидно, что (5. 5. 4.5) не удовлетворяет уравнению (5. 5. 3) во всех точках потока, если функция Ь Ч) не описывает параболический профиль скорости. Однако функция тока ф, определенная при помощи (5. 3. 45). действительно описывает течение жидкости с указанным распределением завихренности. Прп этом движение жидкости является безвихревым на оси трубы и в непосредственной окрестности точки набегания потока.  [c.218]


Уравнение (4.9.3) имеет чисто кинематическую природу и получено без введения каких-либо динамических предположений. Оно применимо, например, к любому классу течений несжимаемой жидкости, для которых такое течение динамически возможно. Этот вопрос можно всегда решить прямой подстановкой в уравнения движения этой функции тока. В частности, отметим, что выражение (4.9.3) удовлетворяет уравнениям безвихревого дви-  [c.127]

Таким образом, в случае безвихревого движения функция тока г з может быть найдена как решение уравнения Лапласа (3.11), удовлетворяющее граничным условиям на бесконечности н на поверхности тела  [c.133]

Обратим внимание еще раз на то, что если потенциал скоростей существует только когда движение безвихревое, то функция тока существует всегда. При безвихревом движении функция тока удовлетворяет уравнению Лапласа.  [c.133]

В ряде важных задач вследствие отрыва пограничного слоя за обтекаемым телом создаются зоны с замкнутыми линиями тока и отличной от нуля завихренностью (рис. 8). Причина этого прежняя — граничные условия прилипания. Потенциальное (безвихревое) движение всегда удовлетворяет уравнению Навье—Стокса, ибо если скорость V является градиентом гармонической функции ф, то очевидно, что ДУ = О, и тогда достаточно  [c.39]

Наибольший интерес представляет плоское безвихревое движение, для которого, кроме потенциала скоростей, существует еще функция тока, введенная впервые Лагранжам в 1781 г. кинематическая интерпретация функции тока, связанная с понятием линии тока, была дана значительно позднее (в 1864 г.) Рэнкиным. Наличие этих двух функций— потенциала скоростей и функции тока, удовлетворяющих в отдельности уравнениям Лапласа, позволило свести решение гидродинамической задачи к разысканию одной комплексной функции — комплексного потенциала. Подробное изложение этого метода, весьма близкого к современному, можно найти в двадцать первой лекции классических Лекций по математической физике (ч. 1, Механика) Кирхгоффа (1876). Отдельные задачи плоского безвихревого потока решались и ранее самим Кирхгоффом в 1845 г. и Гельмгольцем в 1868 г. Заметим, что с математической стороны эти задачи эквивалентны аналогичным задачам электростатики. Наряду с плоским стационарным безвихревым движением были изучена некоторые простейшие задачи нестационарного дви кения (Рэлей в 1878 г., Лэмб в 1875 г. и др.). Особенно больших успехов метод комплексной переменной достиг в теории обтекания тел со срывом струй, созданной трудами Гельмгольца, Кирхгоффа и Жуковского. Подлинного своего расцвета плоская задача безвихревого стационарного и нестационарного движения достигла в первую четверть нашего столетия в замечательных работах ученых московской школы, о чем еще будет речь впереди.  [c.25]


Обратно, если мы предполагаем, что w есть аналитическая функция переменной г, то действительная и мнимая части этой функции представляют собой потенциал скоростей и функцию тока для некоторого возможного двумерного безвихревого движения жидкости, так как они удовлетворяют уравнениям (1) и уравнению Лапласа.  [c.149]

Уравнение для функции тока при безвихревом движении. Если поток симметричен относительно оси х, то, согласно формуле (8) п. 2.72, вихрь равен  [c.447]

Рассмотрим установившееся плоское движение газа, параллельное плоскости ху. Вне зависимости от того, вихревое оно или безвихревое,—можно выразить, воспользовавшись уравнением неразрывности движения, две неизвестные величины, которыми являются и i, j, через одну неизвестную —функцию тока Ф (j , у).  [c.357]

Отсюда заключаем, что в случае безвихревого плоского движения функция тока должна удовлетворять уравнению Лапласа  [c.131]

Уравнение импульса показывает тогда, что переменная часть давления Ар О ). При этом граница О В области О в первом приближении должна оставаться прямой. Теория малых возмуш ений, применяемая к сверхзвуковому потоку 1, показывает, что отклонение наклона О В от прямой О (е ). Для получения стационарного решения температура газа То в области О в первом приближении равна температуре стенки Т . Плотность ро тогда в первом приближении постоянна и соответствует значениям р = Ро, Т = То. Подстановка приведенных оценок в уравнения Навье-Стокса и совершение предельного перехода е О показывает, что течение в области О описывается полными уравнениями Эйлера для невязкой несжимаемой жидкости. Движение остается безвихревым, так как все струйки тока начинаются при хд +оо из состояния покоя (втекая затем в зону смешения). Для функции тока можно написать уравнение Лапласа  [c.39]

Простейшим и наиболее глубоко и всесторонне изученным случаем интегрирования уравнений Эйлера для идеальной несжимаемой жидкости является так называемое безвихревое движение или движение с потенциалом скоростей. Понятие потенциала скоростей было введено Эйлером. Существование функции тока в случае плоского движения было установлено Лагранжем. Кинематический смысл этой функции и ее связь с линией тока были разъяснены Рэнкином в 1864 г. Лагранж в 1781 г. первый нашел те динамические условия, при выполнении которых будет существовать безвихревое движение с потенциалом скоростей, Теорема Лагранжа, лежащая в основе всей теории безвихревого течения и оправдывающая практическое применение теориИ( была в 1815 г. строго доказана Коши (1789—1857).  [c.24]

Движение безвихревого несжимаемого потока можно полностью определить, если известна потенциальная функция ф или функция тока я з, связь между которыми дается уравнениями (2.5.9), известными в теории функций комплексного переменного как уравнения Коши —Римана. Эти уравнения выражают необходимые и достаточные условия того, что комбинация из двух функций ф+1т з является аналитической функцией комплексного переменного г= =x + iy, т. е. дифференцируемой во всех точках некоторой области. Введем обозначение для этой функции  [c.91]

Таким образом, функция тока, как и потенциал скорости, является гармонической функцией. И еще одно важное обстоятельство. Если потенциал скорости существует только в потенциальном потоке, то функция тока этим условием не ограничена. Это объясняется тем, что уравнение неразрывности, которое используется для получения этого понятия, справедливо как для вихревого, так и для безвихревого движений.  [c.48]

Так как при выводе интеграла (49) на с1х, йу, йг мы не налагали ограничений, то постоянная в уравнении (50) будет универсальной. Интеграл Лагранжа в форме (50) будет совпадать с интегралом Бернулли (33), полученным для безвихревого стационарного движения идеальной жидкости. Интеграл Бернулли (32), полученный интегрированием уравнений Эйлера вдоль линии тока, отличается от интеграла Лагранжа, так как постоянная в интеграле (32) может быть различной для разных линий тока. Движение жидкости, при котором постоянная в интеграле Бернулли универсальна для всех линий тока, есть потенциальное движение. Пользуясь уравнениями (48), можно доказать очень важную теорему Лагранжа если для движущейся жидкости при действии сил, имеющих потенциальную функцию, в какой-нибудь момент времени существует потенциал скоростей, то течение будет потенциальным во все время движения. В самом деле, уравнения (48) можно записать в следующей форме  [c.280]


Если несколько явлений, различных по своей физической природе, могут быть выражены одними и темн же дифференциальными уравнениями при одних и тех же условиях однозначности, то такие явления называются аналогичными, а метод их исследования — аналогией. В технической механике жидкости часто используются электрогидродинамическая аналогия (ЭГДА), газогидравлическая аналогия (ГАГА), гидромагнитная аналогия (МАГА) и другие аналогии. Приведенные аналогии относятся к безвихревому (потенциальному) движению невязкой несжимаемой жидкости, которое, как известно, оп-исывается уравнениями Лапласа для потенциала скорости и функции тока д Ф 3 ф  [c.395]

В качестве примера безвихревого движения около тела рассмотрим двумерный поток в направлении оси х, обтекающий неподвижный цилиндр, ось которого нерпендикулярна направлению течения. Уравнение ноля течения получается из потенциальной теории [Л. 1], причем линии тока соответствуют постоянным значениям функции тока  [c.394]

Наиболее замечате-ньные результаты были получены в XIX в. в области исследования плоских установившихся потенциальных течений несжимаемой жидкости. Еще Ж. Лагранж (1781) ввел функцию тока для плоских течений удовлетворяющую для безвихревых течений, как и потенциал скорости, уравнению Лапласа. Кинематическое истолкование функции тока было дано В. Ренкином Разработка аппарата теории функций комплексного переменного дала возможность широко развить методы исследования плоских задач движения несжимаемой жидкости, которые в самом начале развивались совместно со смежными исследованиями задач электростатики. Первые работы, в которых при помощи теории аналитических функций исследуются простейшие задачи электростатики и гидродинамики, относятся к 60-м годам. Существенное развитие области применения теории функций в гидродинамике связано с изучением открытого Г. Гельмгольцем класса так называемых струйных течений жидкости — течений со свободными ли-78 ниями тока, на которых давление сохраняется постоянным. Интерес к этим течениям возник в связи с попытками получить на основе модели идеальной жидкости реальные картины обтекания тел с образованием силы лобового сопротивления и без бесконечных скоростей.  [c.78]

Так как движение сообщается неподвижной жидкости, то, когда тело движется через нее, кинетическая энергия всей системы обязательно больше, чем энергия одного тела. Ввиду того, что работа, производящая этот излишек энергии, должна поставляться телом, усилие на тело зависит не только от скорости, но и от ускорения. Таким образом, если временное изменение кинематических соотношений включается в функцию потенциала или тока безвихревого потока, то для определения кинетической энергии жидкости можно использовать форму уравнения Бернулли для неустановившегося двилеения. Кирхгоф упростил эту проблему, доказав, что полное усилие может быть выражено в членах присоединенных масс или приращений действительной массы тела, пропорциональных объему и плотности вовлеченной в дви-леение жидкости коэффициент пропорциональности изменяется с изменением формы тела. Тэйлор увеличил ценность понятия присоединенных масс, выразив их в членах особенностей, порождаемых телом. Наконец, Легалли установил прямое соотношение между силами, действующими на тело, и особенностями. Таким образом, если распределение особенностей задано или установлено одним из методов решения уравнений течения, как это сделано в следующем разделе, тогда силы и моменты могут быть определены непосредственно без нахождения распределения давления.  [c.92]

Для плоских установившихся движений газа Л. И. Седов предложил использовать в качестве независимых переменных давление р и функцию тока г , а в качестве искомой функции — угол 0 наклона вектора скорости к оси X. Для функции 0 р, г ) также получается уравнение, линейное относительно ее вторых производных. Л, И. Седов (1950) и М, П. Михайлова (1949) рассмотрели решение задачи Коши для этого уравнения с помощью рядов р1азличного вида и изучили его характеристики, Седов нашел точные решения уравнения для 0, в том числе решение, обобщающее решение Прандтля — Майера на некоторый класс вихревых течений, а также установил свойства монотонности изменения газодинамических параметров вдоль характерных линий в области течения эти свойства обобщают аналогичные предложения для безвихревых течений, установленные А, А. Никольским и Г, И, Тагановым (1946), Седову удалось найти частные примеры точного решения задачи сверхзвукового обтекания тела со смешанным течением за скачком, но для неоднородного набегающего потока.  [c.161]

В безвихревом движении величина И имеет постоянное значение во i ex точках жидкости, а фун <ция тока ф удовлетворяет во всех точках равнению = Все типы движений, исследованные в главе III, Не имели шхрей, и функции тока удовлетворяли этому уравнению.  [c.36]

Сопоставляя полученные выражения с уравнениями, связывающидш отенциал скоростей 9, функцию тока ф и составляющие скорости и и V для безвихревого движения (см. выше), видим, что и можно принять за и ф, а р и можно принять соответственно за и и—V.  [c.43]

Вместе с тем написанное уравнение пригодно для изучения как вихревых (неизэнтропических), так и безвихревых (изэнтропических) движений газа. В первом случае оно может быть преобразовано к уравнению для функции тока -ф  [c.509]

Выражение под знаком градиента есть функция, зависящая толь ко от времени, и следовательно, справедливо равенство (3.5). Если дополнительно к условиям теоремы 2 предположить, чт движение жидкости установившееся, т.е. 5ф/Й s О, то интегра Коши (3.5) совпадет с интефалом Бернулли (3.3). Функцию g(0 этом случае следует рассматривать как постоянную во всей облас ти движения. Полученный интефал называется интефалом Бер нулли—Эйлера и отличается от интефала Бернулли тем, что по стоянная в правой части не зависит от выбора линии тока. j В качестве примера рассмотрим задачу об истечении несжи-1 маемой идеальной жидкости из отверстия малой площади в сосуде (рис. 64). Пусть уровень жидкости в сосуде Н, S — площадь поверхности цилиндрического сосуда, s — площадь сечения от-. верстия на глубине Н. Давление воздуха (поверхностные силы на свободной поверхности жидкости) равно р . Поле массовых сил есть поле силы тяжести f=-jge , — орт вертикали. Рассмотрим процесс истечения жидкости как безвихревое установившееся течение идеальной несжимаемой жидкости, прене гая понижением уровня жидкости на изучаемом интервале времени. Эти условия будут выполняться с достаточной степенью точности, если S s-и если с момента начала течения прошло некоторое время и тече- ние приобрело установившийся характер. Обозначим скорость понижения уровня жидкости в сосуде через v, а скорость истечения из отверстия — через V. Уравнение неразрывности имеет вид = sV, г интефал Бернулли—Эйлера представляется в форме  [c.262]



Смотреть страницы где упоминается термин Уравнение для функции тока при безвихревом движении : [c.89]    [c.238]    [c.33]   
Смотреть главы в:

Теоретическая гидродинамика  -> Уравнение для функции тока при безвихревом движении



ПОИСК



Движение безвихревое

Уравнение для функции тока

Уравнения безвихревого движения

Уравнения для функции

Функция тока



© 2025 Mash-xxl.info Реклама на сайте